James E. Amburgey
University of North Carolina at Charlotte
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James E. Amburgey.
Applied and Environmental Microbiology | 2005
Vincent R. Hill; Amy L. Polaczyk; Donghyun Hahn; Jothikumar Narayanan; Theresa L. Cromeans; Jacquelin M. Roberts; James E. Amburgey
ABSTRACT The ability to simultaneously concentrate diverse microbes is an important consideration for sample collection methods that are used for emergency response and environmental monitoring when drinking water may be contaminated with an array of unknown microbes. This study focused on developing a concentration method using ultrafilters and different combinations of a chemical dispersant (sodium polyphosphate [NaPP]) and surfactants. Tap water samples were seeded with bacteriophage MS2, Escherichia coli, Enterococcus faecalis, Cryptosporidium parvum, 4.5-μm microspheres, Salmonella enterica serovar Typhimurium, Bacillus globigii endospores, and echovirus 1. Ten-liter tap water samples were concentrated to ∼250 ml in 12 to 42 min, depending on the experimental condition. Initial experiments indicated that pretreating filters with fetal bovine serum or NaPP resulted in an increase in microbe recovery. The addition of NaPP to the tap water samples resulted in significantly higher microbe and microsphere recovery efficiencies. Backflushing of the ultrafilter was found to significantly improve recovery efficiencies. The effectiveness of backflushing was improved further with the addition of Tween 80 to the backflush solution. The ultrafiltration method developed in this study, incorporating the use of NaPP pretreatment and surfactant solution backflushing, was found to recover MS2, C. parvum, microspheres, and several bacterial species with mean recovery efficiencies of 70 to 93%. The mean recovery efficiency for echovirus 1 (49%) was the lowest of the microbes studied for this method. This research demonstrates that ultrafiltration can be effective for recovering diverse microbes simultaneously in tap water and that chemical dispersants and surfactants can be beneficial for improving microbial recovery using this technique.
Journal of Environmental Quality | 2009
Vincent R. Hill; Amy L. Polaczyk; Amy M. Kahler; Theresa L. Cromeans; Donghyun Hahn; James E. Amburgey
Hollow-fiber ultrafiltration (UF) is a technique that is increasingly viewed as an effective alternative for simultaneously recovering diverse microbes (e.g., viruses, bacteria, parasites) from large volumes of drinking water. The USEPA has organism-specific methods, including Method 1623 for Cryptosporidium and Giardia and the virus adsorption-elution (VIRADEL) technique using 1MDS electropositive filters. In this study, we directly compare the performance of a previously published UF method to that of the USEPA Method 1623 (for recovering Cryptosporidium parvum and Giardia intestinalis) and the 1MDS VIRADEL method (for bacteriophages and echovirus) using 100-L dechlorinated tap water samples. The UF method produced significantly higher recoveries of C. parvum versus Method 1623 (83% mean recovery for UF versus 46% mean recovery for Method 1623), while recoveries for G. intestinalis were similar for both methods. Results of the virus method comparison showed the UF method (including secondary concentration using microconcentrators) to be very effective for the recovery of echovirus 1, bacteriophage MS2, and bacteriophage phi X174, with mean recovery efficiencies of 58, 100, and 77%, respectively. The VIRADEL technique (including secondary concentration by organic flocculation) recovered significantly less echovirus 1, and the bacteriophages could not be quantified by the method due to phage inactivation and/or assay inhibition. The results of this study demonstrate that the UF technique can be as effective, or more effective, than established USEPA methods for recovery of viruses and protozoan parasites from 100-L tap water samples.
Journal of Water and Health | 2012
James E. Amburgey; Kimberly J. Walsh; Roy R. Fielding; Michael J. Arrowood
Cryptosporidium has caused the majority of waterborne disease outbreaks in treated recreational water venues in the USA for many years running. This research project evaluated some common US swimming pool filters for removing Cryptosporidium oocysts, 5-µm diameter polystyrene microspheres, and 1-µm diameter polystyrene microspheres. A 946 L hot tub with interchangeable sand, cartridge, and precoat filters was used at room temperature for this research. Simulated pool water for each experiment was created from Charlotte, NC (USA) tap water supplemented with alkalinity, hardness, chlorine, and a mixture of artificial sweat and urine. Precoat (i.e., diatomaceous earth and perlite) filters demonstrated pathogen removal efficiencies of 2.3 to 4.4 log (or 99.4-99.996%). However, sand and cartridge filters had average Cryptosporidium removals of 0.19 log (36%) or less. The combined low filter removal efficiencies of sand and cartridge filters along with the chlorine-resistant properties of Cryptosporidium oocysts could indicate a regulatory gap warranting further attention and having significant implications on the protection of public health in recreational water facilities. The 5-µm microspheres were a good surrogate for Cryptosporidium oocysts in this study and hold promise for use in future research projects, field trials, and/or product testing on swimming pool filters.
Journal of Water and Health | 2016
Ping Lu; James E. Amburgey
Cryptosporidium species are the most common cause of gastrointestinal illness in treated recreational water venues. In order to protect public health during swimming, Cryptosporidium-sized microsphere removals by high-rate sand filtration with six coagulants were evaluated with a 5.5 m(3) pilot-scale swimming pool. A sand filter without coagulation removed 20-63% of Cryptosporidium-sized microspheres. Cryptosporidium-sized microsphere removals exceeded 98% by sand filtration with five of the six tested coagulants. Continuously feeding coagulants A, B, and F (i.e., organic polymers) led to coagulant accumulation in the system and decreased removals over time (<2 days). Coagulant E (polyaluminum chloride) consistently removed more than 90% of microspheres at 30 m/h while the removals dropped to approximately 50% at a filtration rate of 37 m/h. Coagulant C was a chitosan-based product that removed fewer microspheres compared with other products, <75%, under the studied conditions. Results indicated aluminum-based coagulants (coagulants D and E) had an overall performance advantage over the organic polymer based coagulants primarily in terms of their tendency not to accumulate in the water and cease to be effective at improving filter efficiency.
Journal of Environmental Engineering | 2012
Gina H. Kimble; James E. Amburgey; Vincent R. Hill
The EPA method 1623 is designed specifically for the detection of Cryptosporidium and Giardia, but the method has some issues with low and variable recoveries. Ultrafiltration has been used effectively for microorganism recovery from water samples but is not approved by the EPA. To determine the efficacy of using ultrafiltration, 10-L tap water and surface water samples were seeded with Cryptosporidium and Giardia and concentrated with either a pleated capsule filter or a hollow-fiber ultrafilter. For Cryptosporidum, oocyst recovery in tap water was significantly higher for ultrafiltration (68%) versus the capsule filter (37%); ultrafiltration recovered 65% of oocysts in surface water versus 61% for the capsule filter. However, Giardia cyst recovery was mixed. In tap water, the capsule filter produced a significantly better recovery (85%) of Giardia compared with ultrafiltration (63%), but the surface water ultrafiltration recovery (81%) was significantly better than the capsule filter recovery (40%). Overall, ultrafiltration recoveries were equal to or better for Cryptosporidium, but recoveries of Giardia were varied depending on the filter used and the type of water analyzed.
Journal of Water and Health | 2011
James E. Amburgey; J. Brian Anderson
Cryptosporidium is a chlorine-resistant protozoan parasite responsible for the majority of waterborne disease outbreaks in recreational water venues in the USA. Swim diapers are commonly used by diaper-aged children participating in aquatic activities. This research was intended to evaluate disposable swim diapers for retaining 5-μm diameter polystyrene microspheres, which were used as non-infectious surrogates for Cryptosporidium oocysts. A hot tub recirculating water without a filter was used for this research. The microsphere concentration in the water was monitored at regular intervals following introduction of microspheres inside of a swim diaper while a human subject undertook normal swim/play activities. Microsphere concentrations in the bulk water showed that the majority (50-97%) of Cryptosporidium-sized particles were released from the swim diaper within 1 to 5 min regardless of the swim diaper type or configuration. After only 10 min of play, 77-100% of the microspheres had been released from all swim diapers tested. This research suggests that the swim diapers commonly used by diaper-aged children in swimming pools and other aquatic activities are of limited value in retaining Cryptosporidium-sized particles. Improved swim diaper solutions are necessary to efficiently retain pathogens and effectively safeguard public health in recreational water venues.
Journal of Water and Health | 2017
Ping Lu; James E. Amburgey; Vincent R. Hill; Jennifer L. Murphy; Chandra Schneeberger; Michael J. Arrowood; Tao Yuan
Removal of Cryptosporidium-sized microspheres and Cryptosporidium parvum oocysts from swimming pools was investigated using diatomaceous earth (DE) precoat filtration and perlite-sand filtration. In pilot-scale experiments, microsphere removals of up to 2 log were obtained with 0.7 kg·DE/m2 at a filtration rate of 5 m/h. A slightly higher microsphere removal (2.3 log) was obtained for these DE-precoated filters when the filtration rate was 3.6 m/h. Additionally, pilot-scale perlite-sand filters achieved greater than 2 log removal when at least 0.37 kg/m2 of perlite was used compared to 0.1-0.4 log removal without perlite both at a surface loading rate of 37 m/h. Full-scale testing achieved 2.7 log of microspheres and oocysts removal when 0.7 kg·DE/m2 was used at 3.6 m/h. Removals were significantly decreased by a 15-minute interruption of the flow (without any mechanical agitation) to the DE filter in pilot-scale studies, which was not observed in full-scale filters. Microsphere removals were 2.7 log by perlite-sand filtration in a full-scale swimming pool filter operated at 34 m/h with 0.5 kg/m2 of perlite. The results demonstrate that either a DE precoat filter or a perlite-sand filter can improve the efficiency of removal of microspheres and oocysts from swimming pools over a standard sand filter under the conditions studied.
Journal of Water and Health | 2018
Amir Alansari; James E. Amburgey; Nathan Madding
The primary objective of this study was to conduct a quantitative analysis of the hydraulic efficiency of a 1:25 bench-scale swimming pool and to determine whether the recirculation efficiency could be increased by modifying parameters such as turnover rate, inlet/out configuration, and extent of mixing within the pool. Salt tracer studies were conducted using KCl to determine the residence time distribution and describe the hydraulic characteristics of the pool. The results indicated that the removal of the tracer always followed an exponential decay curve, i.e. 63, 86, 95% for the first, second, and third turnover periods, respectively. In the majority of experiments, the exponential decay rate matched the inverse of the theoretical hydraulic detention time of the system. The results showed that none of the investigated parameters had any significant impact on the tracer removal efficiency. Increasing removal efficiencies of current treatment technologies such as sand and cartridge filters from approximately 25-90% would provide significant improvements in the rate of removal of Cryptosporidium-sized particles. Improving the treatment efficiency beyond 90% would have little additional impact, but further improvements could be achieved by decreasing the system turnover rate.
Journal of Microbiological Methods | 2008
Amy L. Polaczyk; Jothikumar Narayanan; Theresa L. Cromeans; Donghyun Hahn; Jacqueline M. Roberts; James E. Amburgey; Vincent R. Hill
Journal of Environmental Engineering | 2005
James E. Amburgey; Appiah Amirtharajah