Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James E. East is active.

Publication


Featured researches published by James E. East.


Journal of Medicinal Chemistry | 2011

Development of amidine-based sphingosine kinase 1 nanomolar inhibitors and reduction of sphingosine 1-phosphate in human leukemia cells.

Andrew J. Kennedy; Thomas P. Mathews; Yugesh Kharel; Saundra D. Field; Morgan L. Moyer; James E. East; Joseph D. Houck; Kevin R. Lynch; Timothy L. Macdonald

Sphingosine 1-phosphate (S1P) is a bioactive lipid that has been identified as an accelerant of cancer progression. The sphingosine kinases (SphKs) are the sole producers of S1P, and thus, SphK inhibitors may prove effective in cancer mitigation and chemosensitization. Of the two SphKs, SphK1 overexpression has been observed in a myriad of cancer cell lines and tissues and has been recognized as the presumptive target over that of the poorly characterized SphK2. Herein, we present the design and synthesis of amidine-based nanomolar SphK1 subtype-selective inhibitors. A homology model of SphK1, trained with this library of amidine inhibitors, was then used to predict the activity of additional, more potent, inhibitors. Lastly, select amidine inhibitors were validated in human leukemia U937 cells, where they significantly reduced endogenous S1P levels at nanomolar concentrations.


Medicinal Research Reviews | 2014

Raising the Roof: The Preferential Pharmacological Stimulation of Th1 and Th2 Responses Mediated by NKT Cells

James E. East; Andrew J. Kennedy; Tonya J. Webb

Natural killer T (NKT) cells serve as a bridge between the innate and adaptive immune systems, and manipulating their effector functions can have therapeutic significances in the treatment of autoimmunity, transplant biology, infectious disease, and cancer. NKT cells are a subset of T cells that express cell‐surface markers characteristic of both natural killer cells and T cells. These unique immunologic cells have been demonstrated to serve as a link between the innate and adaptive immune systems through their potent cytokine production following the recognition of a range of lipid antigens, mediated through presentation of the major histocompatibility complex (MHC) class I like CD1d molecule, in addition to the NKT cells cytotoxic capabilities upon activation. Although a number of glycolipid antigens have been shown to complex with CD1d molecules, most notably the marine sponge derived glycolipid alpha‐galactosylceramide (α‐GalCer), there has been debate as to the identity of the endogenous activating lipid presented to the T‐cell receptor (TCR) via the CD1d molecule on antigen‐presenting cells (APCs). This review aims to survey the use of pharmacological agents and subsequent structure–activity relationships (SAR) that have given insight into the binding interaction of glycolipids with both the CD1d molecules as well as the TCR and the subsequent immunologic response of NKT cells. These studies not only elucidate basic binding interactions but also pave the way for future pharmacological modulation of NKT cell responses.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis and structure-activity relationships of tyrosine-based inhibitors of autotaxin (ATX).

James E. East; Andrew J. Kennedy; Jose L. Tomsig; Alexandra R. De Leon; Kevin R. Lynch; Timothy L. Macdonald

Autotaxin (ATX) is a secreted soluble enzyme that generates lysophosphatidic acid (LPA) through its lysophospholipase D activity. Because of LPAs role in neoplastic diseases, ATX is an attractive therapeutic target due to its involvement in LPA biosynthesis. Here we describe the SAR of ATX inhibitor, VPC8a202, and apply this SAR knowledge towards developing a high potency inhibitor. We found that electron density in the pyridine region greatly influences activity of our inhibitors at ATX.


Journal of Interferon and Cytokine Research | 2012

Connecting the Dots: Artificial Antigen Presenting Cell-Mediated Modulation of Natural Killer T Cells

Wenji Sun; Priyanka B. Subrahmanyam; James E. East; Tonya J. Webb

Natural killer T (NKT) cells constitute an important subset of T cells that can both directly and indirectly mediate antitumor immunity. However, we and others have reported that cancer patients have a reduction in both NKT cell number and function. NKT cells can be stimulated and expanded with α-GalCer and cytokines and these expanded NKT cells retain their phenotype, remain responsive to antigenic stimulation, and display cytotoxic function against tumor cell lines. These data strongly favor the use of ex vivo expanded NKT cells in adoptive immunotherapy. NKT cell based-immunotherapy has been limited by the use of autologous antigen-presenting cells, which can vary substantially in their quantity and quality. A standardized system that relies on artificial antigen-presenting cells (aAPCs) could produce the stimulating effects of dendritic cell (DC) without the pitfalls of allo- or xenogeneic cells. In this review, we discuss the progress that has been made using CD1d-based aAPC and how this acellular antigen presenting system can be used in the future to enhance our understanding of NKT cell biology and to develop NKT cell-specific adoptive immunotherapeutic strategies.


Journal of Visualized Experiments | 2012

Artificial Antigen Presenting Cell (aAPC) Mediated Activation and Expansion of Natural Killer T Cells

James E. East; Wenji Sun; Tonya J. Webb

Natural killer T (NKT) cells are a unique subset of T cells that display markers characteristic of both natural killer (NK) cells and T cells1. Unlike classical T cells, NKT cells recognize lipid antigen in the context of CD1 molecules2. NKT cells express an invariant TCRα chain rearrangement: Vα14Jα18 in mice and Vα24Jα18 in humans, which is associated with Vβ chains of limited diversity3-6, and are referred to as canonical or invariant NKT (iNKT) cells. Similar to conventional T cells, NKT cells develop from CD4-CD8- thymic precursor T cells following the appropriate signaling by CD1d 7. The potential to utilize NKT cells for therapeutic purposes has significantly increased with the ability to stimulate and expand human NKT cells with α-Galactosylceramide (α-GalCer) and a variety of cytokines8. Importantly, these cells retained their original phenotype, secreted cytokines, and displayed cytotoxic function against tumor cell lines. Thus, ex vivo expanded NKT cells remain functional and can be used for adoptive immunotherapy. However, NKT cell based-immunotherapy has been limited by the use of autologous antigen presenting cells and the quantity and quality of these stimulator cells can vary substantially. Monocyte-derived DC from cancer patients have been reported to express reduced levels of costimulatory molecules and produce less inflammatory cytokines9,10. In fact, murine DC rather than autologous APC have been used to test the function of NKT cells from CML patients11. However, this system can only be used for in vitro testing since NKT cells cannot be expanded by murine DC and then used for adoptive immunotherapy. Thus, a standardized system that relies on artificial Antigen Presenting Cells (aAPC) could produce the stimulating effects of DC without the pitfalls of allo- or xenogeneic cells12, 13. Herein, we describe a method for generating CD1d-based aAPC. Since the engagement of the T cell receptor (TCR) by CD1d-antigen complexes is a fundamental requirement of NKT cell activation, antigen: CD1d-Ig complexes provide a reliable method to isolate, activate, and expand effector NKT cell populations.


MedChemComm | 2011

Development of a phosphatase-resistant, L-tyrosine derived LPA1/LPA3 dual antagonist.

James E. East; Karen M. Carter; Perry C. Kennedy; Nancy A. Schulte; Myron L. Toews; Kevin R. Lynch; Timothy L. Macdonald

Lysophosphatidic acid (LPA) is a bioactive compound that has gained attention due to its role in neoplastic diseases. Our group has developed a potent dual LPA1/LPA3 receptor antagonist, VPC51098 (LPA1 IC(50) = 84 nM, LPA1 IC(50) = 48 nM) that contained a labile phosphate head group. This lability has impaired our evaluation of our scaffold of LPA receptor antagonists in vivo. We wished to replace the phosphate with a potentially more stable head group while retaining potency at both LPA1 and LPA3 to facilitate future in vivo studies. We tested in vitro potency of all head groups including α-methylene, α-fluoromethylene, α-hydroxymethylene; vinyl phosphonates; α-fluoro vinyl phosphonates. The most potent compound was found to be a low micromolar inhibitor VPC51299 that contained a vinyl phosphonate and possessed a half-life of approximately 90 min in rats when dosed intravenously. Herein, we describe the synthesis and initial biological evaluation of these compounds.


Fems Immunology and Medical Microbiology | 2016

Sphingosine 1-phosphate signaling impacts lymphocyte migration, inflammation and infection.

Irina V. Tiper; James E. East; Priyanka B. Subrahmanyam; Tonya J. Webb

Sphingosine 1-phosphate (S1P) is a sphingosine containing lipid intermediate obtained from ceramide. S1P is known to be an important signaling molecule and plays multiple roles in the context of immunity. This lysophospholipid binds and activates G-protein-coupled receptors (GPCRs) known as S1P receptors 1-5 (S1P1-5). Once activated, these GPCRs mediate signaling that can lead to alterations in cell proliferation, survival or migration, and can also have other effects such as promoting angiogenesis. In this review, we will present evidence demonstrating a role for S1P in lymphocyte migration, inflammation and infection, as well as in cancer. The therapeutic potential of targeting S1P receptors, kinases and lyase will also be discussed.


Cytokine | 2015

Invariant natural killer T cells generated from human adult hematopoietic stem-progenitor cells are poly-functional

Wenji Sun; Yi Wang; James E. East; Amy Kimball; Katherine Tkaczuk; Susan Kesmodel; Scott E. Strome; Tonya J. Webb

Invariant natural killer T (iNKT) cells constitute an important subset of T cells that can both directly and indirectly mediate anti-tumor immunity. However, cancer patients have a reduction in both iNKT cell number and function, and these deficits limit the potential clinical application of iNKT cells for cancer therapy. To overcome the problem of limited iNKT cell numbers, we investigated whether iNKT cells can be generated in vitro from bone marrow-derived adult hematopoietic stem-progenitor cells (HSPC). Our data demonstrate that co-culture of HSPC with OP9-DL1 stromal cells, results in a functional CD3(+) T cell population. These T cells can be further differentiated into iNKT cells by secondary culture with CD1d-Ig-based artificial antigen-presenting cells (aAPC). Importantly, these in vitro-generated iNKT cells are functional, as demonstrated by their ability to proliferate and secrete IFN-γ and GM-CSF following stimulation.


Journal of Vaccines and Vaccination | 2012

Natural killer T cell based Immunotherapy.

Priyanka B. Subrahmanyam; Wenji Sun; James E. East; Junxin Li; Tonya J. Webb

Natural killer T (NKT) cells play an important immunoregulatory role and are thought to bridge the innate and adaptive immune responses. Following activation through cognate interactions with lipid antigen presented in the context of CD1d molecules, NKT cells rapidly produce a plethora of cytokines and can also mediate cytotoxicity. Due to their potent effector functions, extensive research has been performed to increase our understanding on how to effectively modulate these cells. In fact, NKT cell agonists have been used as vaccine adjuvants to enhance antigen specific T and B cell responses to infections and malignancy. In this review, we will focus on recent advances in NKT cell-based vaccination strategies. Given the role that NKT cells play in autoimmune disease, infectious diseases, cancer, transplant immunology and dermatology, it is important to understand how to effectively guide their effector functions in order to develop novel immunotherapeutic strategies.


Synthetic Communications | 2012

Cost-effective and Large-scale synthesis of 16:0 Lysophosphatidic Acid.

James E. East; Timothy L. Macdonald

Abstract Lysophosphatidic acid (LPA) is a bioactive compound that has gained attention because of its role in neoplastic diseases. Popularity of the compound has necessitated the use of large quantities of the phospholipid for in vivo and in vitro testing, but methods for generating LPA require the use of costly procedures, namely phosphoramidite coupling reagents. Additionally there has been no reported large-scale synthesis of LPA. In the present study we report the cost-effective and large-scale synthesis of 16:0 LPA. GRAPHICAL ABSTRACT

Collaboration


Dive into the James E. East's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenji Sun

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Amy Kimball

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge