Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James E. Huettner is active.

Publication


Featured researches published by James E. Huettner.


Nature | 1999

Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord

Ping Li; Timothy J. Wilding; Susan J. Kim; Amelita A. Calejesan; James E. Huettner; Min Zhuo

Glutamate, the major excitatory neurotransmitter in the central nervous system, activates three different receptors that directly gate ion channels, namely receptors for AMPA (α-amino-3-hydroxy-5-methyl isoxozole propionic acid), NMDA (N-methyl-D-aspartate), and kainate, a structural analogue of glutamate. The contribution of AMPA and NMDA receptors to synaptic transmission and plasticity is well established. Recent work on the physiological function of kainate receptors has focused on the hippocampus, where repetitive activation of the mossy-fibre pathway generates a slow, kainate-receptor-mediated excitatory postsynaptic current (EPSC). Here we show that high-intensity single-shock stimulation (of duration 200 microseconds) of primary afferent sensory fibres produces a fast, kainate-receptor-mediated EPSC in the superficial dorsal horn of the spinal cord. Activation of low-threshold afferent fibres generates typical AMPA-receptor-mediated EPSCs only, indicating that kainate receptors may be restricted to synapses formed by high-threshold nociceptive (pain-sensing) and thermoreceptive primary afferent fibres. Consistent with this possibility, kainate-receptor-mediated EPSCs are blocked by the analgesic µ-opiate-receptor agonist Damgo and spinal blockade of both kainate and AMPA receptors produces antinociception. Thus, spinal kainate receptors contribute to transmission of somatosensory inputs from the periphery to the brain.


Progress in Neurobiology | 2003

Kainate receptors and synaptic transmission.

James E. Huettner

Excitatory glutamatergic transmission involves a variety of different receptor types, each with distinct properties and functions. Physiological studies have identified both post- and presynaptic roles for kainate receptors, which are a subtype of the ionotropic glutamate receptors. Kainate receptors contribute to excitatory postsynaptic currents in many regions of the central nervous system including hippocampus, cortex, spinal cord and retina. In some cases, postsynaptic kainate receptors are co-distributed with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors, but there are also synapses where transmission is mediated exclusively by postsynaptic kainate receptors: for example, in the retina at connections made by cones onto off bipolar cells. Modulation of transmitter release by presynaptic kainate receptors can occur at both excitatory and inhibitory synapses. The depolarization of nerve terminals by current flow through ionotropic kainate receptors appears sufficient to account for most examples of presynaptic regulation; however, a number of studies have provided evidence for metabotropic effects on transmitter release that can be initiated by activation of kainate receptors. Recent analysis of knockout mice lacking one or more of the subunits that contribute to kainate receptors, as well as studies with subunit-selective agonists and antagonists, have revealed the important roles that kainate receptors play in short- and long-term synaptic plasticity. This review briefly addresses the properties of kainate receptors and considers in greater detail the physiological analysis of their contributions to synaptic transmission.


Nature Neuroscience | 1999

AMPA receptor|[ndash]|PDZ interactions in facilitation of spinal sensorysynapses

Ping Li; Geoffrey A. Kerchner; Carlo Sala; Feng Wei; James E. Huettner; Morgan Sheng; Min Zhuo

Silent synapses form between some primary sensory afferents and dorsal horn neurons in the spinal cord. Molecular mechanisms for activation or conversion of silent synapses to conducting synapses are unknown. Serotonin can trigger activation of silent synapses in dorsal horn neurons by recruiting AMPA receptors. AMPA-receptor subunits GluR2 and GluR3 interact via their cytoplasmic C termini with PDZ-domain-containing proteins such as GRIP (glutamate receptor interacting protein), but the functional significance of these interactions is unclear. Here we demonstrate that protein interactions involving the GluR2/3 C terminus are important for serotonin-induced activation of silent synapses in the spinal cord. Furthermore, PKC is a necessary and sufficient trigger for this activation. These results implicate AMPA receptor–PDZ interactions in mechanisms underlying sensory synaptic potentiation and provide insights into the pathogenesis of chronic pain.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons

Alexis B. Webb; Nikhil Angelo; James E. Huettner; Erik D. Herzog

Circadian rhythms are modeled as reliable and self-sustained oscillations generated by single cells. The mammalian suprachiasmatic nucleus (SCN) keeps near 24-h time in vivo and in vitro, but the identity of the individual cellular pacemakers is unknown. We tested the hypothesis that circadian cycling is intrinsic to a unique class of SCN neurons by measuring firing rate or Period2 gene expression in single neurons. We found that fully isolated SCN neurons can sustain circadian cycling for at least 1 week. Plating SCN neurons at <100 cells/mm2 eliminated synaptic inputs and revealed circadian neurons that contained arginine vasopressin (AVP) or vasoactive intestinal polypeptide (VIP) or neither. Surprisingly, arrhythmic neurons (nearly 80% of recorded neurons) also expressed these neuropeptides. Furthermore, neurons were observed to lose or gain circadian rhythmicity in these dispersed cell cultures, both spontaneously and in response to forskolin stimulation. In SCN explants treated with tetrodotoxin to block spike-dependent signaling, neurons gained or lost circadian cycling over many days. The rate of PERIOD2 protein accumulation on the previous cycle reliably predicted the spontaneous onset of arrhythmicity. We conclude that individual SCN neurons can generate circadian oscillations; however, there is no evidence for a specialized or anatomically localized class of cell-autonomous pacemakers. Instead, these results indicate that AVP, VIP, and other SCN neurons are intrinsic but unstable circadian oscillators that rely on network interactions to stabilize their otherwise noisy cycling.


Journal of Cell Biology | 2005

Palmitoylation regulates plasma membrane–nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family

Ryan M. Drenan; Craig A. Doupnik; Maureen P. Boyle; Louis J. Muglia; James E. Huettner; Maurine E. Linder; Kendall J. Blumer

The RGS7 (R7) family of RGS proteins bound to the divergent Gβ subunit Gβ5 is a crucial regulator of G protein–coupled receptor (GPCR) signaling in the visual and nervous systems. Here, we identify R7BP, a novel neuronally expressed protein that binds R7–Gβ5 complexes and shuttles them between the plasma membrane and nucleus. Regional expression of R7BP, Gβ5, and R7 isoforms in brain is highly coincident. R7BP is palmitoylated near its COOH terminus, which targets the protein to the plasma membrane. Depalmitoylation of R7BP translocates R7BP–R7–Gβ5 complexes from the plasma membrane to the nucleus. Compared with nonpalmitoylated R7BP, palmitoylated R7BP greatly augments the ability of RGS7 to attenuate GPCR-mediated G protein–regulated inward rectifying potassium channel activation. Thus, by controlling plasma membrane nuclear–shuttling of R7BP–R7–Gβ5 complexes, reversible palmitoylation of R7BP provides a novel mechanism that regulates GPCR signaling and potentially transduces signals directly from the plasma membrane to the nucleus.


Journal of Neurobiology | 1999

BMP-4 inhibits neural differentiation of murine embryonic stem cells

Michael F. A. Finley; Sandeep Devata; James E. Huettner

Members of the transforming growth factor-beta superfamily, including bone morphogenetic protein 4 (BMP-4), have been implicated as regulators of neuronal and glial differentiation. To test for a possible role of BMP-4 in early mammalian neural specification, we examined its effect on neurogenesis in aggregate cultures of mouse embryonic stem (ES) cells. Compared to control aggregates, in which up to 20% of the cells acquired immunoreactivity for the neuron-specific antibody TuJ1, aggregates maintained for 8 days in serum-free medium containing BMP-4 generated 5- to 10-fold fewer neurons. The action of BMP-4 was dose dependent and restricted to the fifth through eighth day in suspension. In addition to the reduction in neurons, we observed that ES cell cultures exposed to BMP-4 contained fewer cells that were immunoreactive for glial fibrillary acidic protein or the HNK-1 neural antigen. Furthermore, under phase contrast, cultures prepared from BMP-4-treated aggregates contained a significant proportion of nonneuronal cells with a characteristic flat, elongated morphology. These cells were immunoreactive for antibodies to the intermediate filament protein vimentin; they were rare or absent in control cultures. Treatment with BMP-4 enhanced the expression of the early mesodermal genes brachyury and tbx6 but had relatively little effect on total cell number or cell death. Coapplication of the BMP-4 antagonist noggin counteracted the effect of exogenous BMP-4, but noggin alone had no effect on neuralization in either the absence or presence of retinoids. Collectively, our results suggest that BMP-4 can overcome the neuralizing action of retinoic acid to enhance mesodermal differentiation of murine ES cells.


Proceedings of the National Academy of Sciences of the United States of America | 2006

GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons

Sara J. Aton; James E. Huettner; Martin Straume; Erik D. Herzog

Neurons in the mammalian suprachiasmatic nuclei (SCN) generate daily rhythms in physiology and behavior, but it is unclear how they maintain and synchronize these rhythms in vivo. We hypothesized that parallel signaling pathways in the SCN are required to synchronize rhythms in these neurons for coherent output. We recorded firing and clock-gene expression patterns while blocking candidate signaling pathways for at least 8 days. GABAA and GABAB antagonism increased circadian peak firing rates and rhythm precision of cultured SCN neurons, but Gi/o did not impair synchrony or rhythmicity. In contrast, inhibiting Gi/o with pertussis toxin abolished rhythms in most neurons and desynchronized the population, phenocopying the loss of vasoactive intestinal polypeptide (VIP). Daily VIP receptor agonist treatment restored synchrony and rhythmicity to VIP−/− SCN cultures during continuous GABA receptor antagonism but not during Gi/o blockade. Pertussis toxin did not affect circadian cycling of the liver, suggesting that Gi/o plays a specialized role in maintaining SCN rhythmicity. We conclude that endogenous GABA controls the amplitude of SCN neuronal rhythms by reducing daytime firing, whereas Gi/o signaling suppresses nighttime firing, and it is necessary for synchrony among SCN neurons. We propose that Gi/o, not GABA activity, converges with VIP signaling to maintain and coordinate rhythms among SCN neurons.


Neuron | 2001

Direct presynaptic regulation of GABA/glycine release by kainate receptors in the dorsal horn: an ionotropic mechanism.

Geoffrey A. Kerchner; Guo-Du Wang; Chang-Shen Qiu; James E. Huettner; Min Zhuo

In the spinal cord dorsal horn, excitatory sensory fibers terminate adjacent to interneuron terminals. Here, we show that kainate (KA) receptor activation triggered action potential-independent release of GABA and glycine from dorsal horn interneurons. This release was transient, because KA receptors desensitized, and it required Na+ entry and Ca2+ channel activation. KA modulated evoked inhibitory transmission in a dose-dependent, biphasic manner, with suppression being more prominent. In recordings from isolated neuron pairs, this suppression required GABA(B) receptor activation, suggesting that KA-triggered GABA release activated presynaptic GABA(B) autoreceptors. Finally, glutamate released from sensory fibers caused a KA and GABA(B) receptor-dependent suppression of inhibitory transmission in spinal slices. Thus, we show how presynaptic KA receptors are linked to changes in GABA/glycine release and highlight a novel role for these receptors in regulating sensory transmission.


Cells Tissues Organs | 1999

An in vitro Pathway from Embryonic Stem Cells to Neurons and Glia

David I. Gottlieb; James E. Huettner

Mouse embryonic stem (ES) cells can be induced to differentiate into neurons and glia in vitro. Induction protocols are straightforward and involve culture in the presence of retinoic acid. They result in an efficient conversion of undifferentiated ES cells to neural cells. Mature neurons produced have the key physiological, morphological and molecular properties of primary cultured neurons derived from the central nervous system. Most significantly, they form functional chemical synapses that utilize either glutamate, GABA or glycine as neurotransmitters. ES cell-derived glial cells also correspond well with their normal counterparts. During induction, ES cells undergo a series of developmental steps that resemble key stages in the early mouse embryo. This supports the hypothesis that the in vitro pathway is a valid model of the normal developmental pathway leading to neurons and glia. The in vitro system combines three experimental strengths. It is suitable for genetic manipulation, affords large numbers of cells and allows precise manipulation of the culture environment. It is thus suitable for a wide variety of mechanistic studies in the areas of neural development and cell biology.


Developmental Biology | 2009

Regulation of mouse embryonic stem cell neural differentiation by retinoic acid

Mijeong Kim; Ayman Habiba; Jason M. Doherty; Jason C. Mills; Robert W. Mercer; James E. Huettner

Pluripotent mouse embryonic stem cells (ESCs) derived from the early blastocyst can differentiate in vitro into a variety of somatic cell types including lineages from all three embryonic germ layers. Protocols for ES cell neural differentiation typically involve induction by retinoic acid (RA), or by exposure to growth factors or medium conditioned by other cell types. A serum-free differentiation (SFD) medium completely lacking exogenous retinoids was devised that allows for efficient conversion of aggregated mouse ESCs into neural precursors and immature neurons. Neural cells produced in this medium express neuronal ion channels, establish polarity, and form functional excitatory and inhibitory synapses. Brief exposure to RA during the period of cell aggregation speeds neuronal maturation and suppresses cell proliferation. Differentiation without RA yields neurons and neural progenitors with apparent telencephalic identity, whereas cells differentiated with exposure to RA express markers of hindbrain and spinal cord. Transcriptional profiling indicates a substantial representation of transit amplifying neuroblasts in SFD cultures not exposed to RA.

Collaboration


Dive into the James E. Huettner's collaboration.

Top Co-Authors

Avatar

Timothy J. Wilding

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Min Zhuo

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David I. Gottlieb

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Erik D. Herzog

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Melany N. Lopez

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michael F. A. Finley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ping Li

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chelsea R. Brown

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge