Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James E. Korkola is active.

Publication


Featured researches published by James E. Korkola.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Subtype and pathway specific responses to anticancer compounds in breast cancer

Laura M. Heiser; Anguraj Sadanandam; Wen-Lin Kuo; Stephen Charles Benz; Theodore C. Goldstein; Sam Ng; William J. Gibb; Nicholas Wang; Safiyyah Ziyad; Frances Tong; Nora Bayani; Zhi Hu; Jessica Billig; Andrea Dueregger; Sophia Lewis; Lakshmi Jakkula; James E. Korkola; Steffen Durinck; Francois Pepin; Yinghui Guan; Elizabeth Purdom; Pierre Neuvial; Henrik Bengtsson; Kenneth W. Wood; Peter G. Smith; Lyubomir T. Vassilev; Bryan T. Hennessy; Joel Greshock; Kurtis E. Bachman; Mary Ann Hardwicke

Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.


Clinical Cancer Research | 2005

Bladder Cancer Outcome and Subtype Classification by Gene Expression

Ekaterini Blaveri; Jeff Simko; James E. Korkola; Jeremy L. Brewer; Frederick L. Baehner; Kshama R. Mehta; Sandy DeVries; Theresa M. Koppie; Sunanda Pejavar; Peter R. Carroll; Frederic M. Waldman

Models of bladder tumor progression have suggested that genetic alterations may determine both phenotype and clinical course. We have applied expression microarray analysis to a divergent set of bladder tumors to further elucidate the course of disease progression and to classify tumors into more homogeneous and clinically relevant subgroups. cDNA microarrays containing 10,368 human gene elements were used to characterize the global gene expression patterns in 80 bladder tumors, 9 bladder cancer cell lines, and 3 normal bladder samples. Robust statistical approaches accounting for the multiple testing problem were used to identify differentially expressed genes. Unsupervised hierarchical clustering successfully separated the samples into two subgroups containing superficial (pTa and pT1) versus muscle-invasive (pT2-pT4) tumors. Supervised classification had a 90.5% success rate separating superficial from muscle-invasive tumors based on a limited subset of genes. Tumors could also be classified into transitional versus squamous subtypes (89% success rate) and good versus bad prognosis (78% success rate). The performance of our stage classifiers was confirmed in silico using data from an independent tumor set. Validation of differential expression was done using immunohistochemistry on tissue microarrays for cathepsin E, cyclin A2, and parathyroid hormone–related protein. Genes driving the separation between tumor subsets may prove to be important biomarkers for bladder cancer development and progression and eventually candidates for therapeutic targeting.


Cancer | 2004

Clonality of lobular carcinoma in situ and synchronous invasive lobular carcinoma

E. Shelley Hwang; Sarah J. Nyante; Yunn Yi Chen; Dan H. Moore; Sandy DeVries; James E. Korkola; Laura Esserman; Frederic M. Waldman

Lobular carcinoma in situ (LCIS) of the breast is considered a marker for an increased risk of carcinoma in both breasts. However, the frequent association of LCIS with invasive lobular carcinoma (ILC) suggests a precursor‐product relation. The possible genomic relation between synchronous LCIS and ILC was analyzed using the technique of array‐based comparative genomic hybridization (CGH).


Genome Biology | 2013

Modeling precision treatment of breast cancer

Anneleen Daemen; Obi L. Griffith; Laura M. Heiser; Nicholas Wang; Oana M Enache; Zachary Sanborn; Francois Pepin; Steffen Durinck; James E. Korkola; Malachi Griffith; Joe S Hur; Nam Huh; Jong-Suk Chung; Leslie Cope; Mary Jo Fackler; Christopher B. Umbricht; Saraswati Sukumar; Pankaj Seth; Vikas P. Sukhatme; Lakshmi Jakkula; Yiling Lu; Gordon B. Mills; Raymond J. Cho; Eric A. Collisson; Laura J. van 't Veer; Paul T. Spellman; Joe W. Gray

BackgroundFirst-generation molecular profiles for human breast cancers have enabled the identification of features that can predict therapeutic response; however, little is known about how the various data types can best be combined to yield optimal predictors. Collections of breast cancer cell lines mirror many aspects of breast cancer molecular pathobiology, and measurements of their omic and biological therapeutic responses are well-suited for development of strategies to identify the most predictive molecular feature sets.ResultsWe used least squares-support vector machines and random forest algorithms to identify molecular features associated with responses of a collection of 70 breast cancer cell lines to 90 experimental or approved therapeutic agents. The datasets analyzed included measurements of copy number aberrations, mutations, gene and isoform expression, promoter methylation and protein expression. Transcriptional subtype contributed strongly to response predictors for 25% of compounds, and adding other molecular data types improved prediction for 65%. No single molecular dataset consistently out-performed the others, suggesting that therapeutic response is mediated at multiple levels in the genome. Response predictors were developed and applied to TCGA data, and were found to be present in subsets of those patient samples.ConclusionsThese results suggest that matching patients to treatments based on transcriptional subtype will improve response rates, and inclusion of additional features from other profiling data types may provide additional benefit. Further, we suggest a systems biology strategy for guiding clinical trials so that patient cohorts most likely to respond to new therapies may be more efficiently identified.


Stem Cells | 2009

A Genetic Strategy for Single and Combinatorial Analysis of miRNA Function in Mammalian Hematopoietic Stem Cells

Eirini P. Papapetrou; James E. Korkola; Michel Sadelain

The regulatory role of micro‐RNAs (miRNAs) in hematopoietic development is increasingly appreciated. Reverse genetics strategies based on the targeted disruption of miRNAs offer a powerful tool to study miRNA functions in mammalian hematopoiesis. The miR‐144/451 cluster comprises two miRNAs coexpressed from a common precursor transcript in an erythroid‐specific manner. To decipher the contribution of each miRNA of the cluster in mammalian erythropoiesis, we developed a strategy for stable in vivo individual and combinatorial miRNA inhibition. We developed decoy target sequences for each miRNA expressed by lentiviral vectors marked with distinct fluorescent proteins and used them to probe the functions of miR‐144 and miR‐451 in the murine hematopoietic system in a competitive repopulation setting. Murine hematopoietic chimeras expressing lentiviral‐encoded inhibitory sequences specific for miR‐144 or miR‐451 exhibited markedly reduced Ter119+ erythroblast counts, with the combined knockdown showing additive effect. These chimeras showed abnormal patterns of erythroid differentiation primarily affecting the proerythroblast to basophilic erythroblast transition, coinciding with the stage where expression of the miRNA cluster is dramatically induced and posttranscriptional gene regulation becomes prominent. These results reveal a role for the miR‐144/451 locus in mammalian erythropoiesis and provide the first evidence of functional cooperativity between clustered miRNAs in the hematopoietic system. The strategy described herein will prove useful in functional miRNA studies in mammalian hematopoietic stem cells. STEM CELLS 2010;28:287–296


Journal of Clinical Oncology | 2006

Biology and Genetics of Adult Male Germ Cell Tumors

Jane Houldsworth; James E. Korkola; George J. Bosl; R. S. K. Chaganti

Adult male germ cell tumors (GCTs) arise by transformation of totipotent germ cells. They have the unique potential to activate molecular pathways, in part mimicking those occurring during gametogenesis and normal human development, as evidenced by the array of histopathologies observed in vivo. Recent expression profiling studies of GCTs along with advances in embryonic stem-cell research have contributed to our understanding of the underlying biology of the disease. Gain of the short arm of chromosome 12 detected in almost all adult GCTs appears to be multifunctional in germ cell tumorigenesis on the basis of the observed overexpression of genes mapped to this region involved in maintenance of pluripotency and oncogenesis. Expression signatures associated with the different histopathologies have yielded clues as to the functional mechanisms involved in GCT invasion, loss of pluripotency, and lineage differentiation. Genomic and epigenomic abnormalities that contribute to or cause these events have been identified by traditional genome analyses and continue to be revealed as genome-scanning technologies develop. Given the high sensitivity of most GCTs to cisplatin-based treatment, these tumors serve as an excellent model system for the identification of factors associated with drug resistance, including differentiation status and acquisition of genomic alterations. Overall, adult male GCTs provide a unique opportunity for the examination of functional links between transformation and pluripotency, genomic and epigenomic abnormalities and lineage differentiation, and the identification of genetic features associated with chemotherapy resistance.


The Journal of Molecular Diagnostics | 2005

Array-based comparative genomic hybridization from formalin-fixed, paraffin-embedded breast tumors.

Sandy DeVries; Sarah J. Nyante; James E. Korkola; Richard Segraves; Kentaro Nakao; Dan R Moore; Hanik Bae; Mónica Wilhelm; Shelley Hwang; Frederic M. Waldman

Identification of prognostic and predictive genomic markers requires long-term clinical follow-up of patients. Extraction of high-quality DNA from archived formalin-fixed, paraffin-embedded material is essential for such studies. Of particular importance is a robust reproducible method of whole genome amplification for small tissue samples. This is especially true for high-resolution analytical approaches because different genomic regions and sequences may amplify differentially. We have tested a number of protocols for DNA amplification for array-based comparative genomic hybridization (CGH), in which relative copy number of the entire genome is measured at 1 to 2 mb resolution. Both random-primed amplification and degenerate oligonucleotide-primed amplification approaches were tested using varying amounts of fresh and paraffin-extracted normal and breast tumor input DNAs. We found that random-primed amplification was clearly superior to degenerate oligonucleotide-primed amplification for array-based CGH. The best quality and reproducibility strongly depended on accurate determination of the amount of input DNA using a quantitative polymerase chain reaction-based method. Reproducible and high-quality results were attained using 50 ng of input DNA, and some samples yielded quality results with as little as 5 ng input DNA. We conclude that random-primed amplification of DNA isolated from paraffin sections is a robust and reproducible approach for array-based CGH analysis of archival tumor samples.


Oncogene | 2005

Gene expression-based classification of nonseminomatous male germ cell tumors

James E. Korkola; Jane Houldsworth; Debbie Dobrzynski; Adam B. Olshen; Victor E. Reuter; George J. Bosl; R. S. K. Chaganti

Male adult germ cell tumors (GCTs) comprise two major histologic groups: seminomas and nonseminomas. Nonseminomatous GCTs (NSGCTs) can be further divided into embryonal carcinoma (EC), teratoma (T), yolk sac tumor (YS), and choriocarcinoma (CC) on the basis of the lineage differentiation that they exhibit. NSGCTs frequently present as mixed tumors consisting of two or more histological subtypes, often limiting correlative studies of clinical and molecular features to histology. We sought to develop a molecular classifier that could predict the predominant histologic subtype within mixed NSGCT tumor samples. The expression profiles of 84 NSGCTs (42 pure and 42 mixed) and normal age-matched testes were obtained using Affymetrix microarrays. Using prediction analysis for microarrays, we identified 146 transcripts that classified the histology of pure NSGCTs samples with 93% accuracy. When applied to mixed NSGCTs, the classifier predicted a histology that was consistent with one of the reported components in 93% of cases. Among the predictive transcripts were CGB (high in CC), LCN2 (high in T), BMP2 (high in YS), and POU5F1 (high in EC). Thus, the expression-based classifier accurately assigned a single predominant histology to mixed NSGCTs, and identified transcripts differentially expressed between histologic components with relevance to NSGCT differentiation.


Journal of Clinical Oncology | 2009

Identification and Validation of a Gene Expression Signature That Predicts Outcome in Adult Men With Germ Cell Tumors

James E. Korkola; Jane Houldsworth; Darren R. Feldman; Adam B. Olshen; Li Xuan Qin; Sujata Patil; Victor E. Reuter; George J. Bosl; R. S. K. Chaganti

PURPOSE Germ cell tumor (GCT) is the most common malignancy in young adult men. Currently, patients are risk-stratified on the basis of clinical presentation and serum tumor markers. The introduction of molecular markers could improve outcome prediction. PATIENTS AND METHODS Expression profiling was performed on 74 nonseminomatous GCTs (NSGCTs) from cisplatin-treated patients (ie, training set) and on 34 similarly treated patients with NSGCTs (ie, validation set). A gene classifier was developed by using prediction analysis for microarrays (PAM) for the binary end point of 5-year overall survival (OS). A predictive score was developed for OS by using the univariate Cox model. RESULTS In the training set, PAM identified 140 genes that predicted 5-year OS (cross-validated classification rate, 60%). The PAM model correctly classified 90% of patients in the validation set. Patients predicted to have good outcome had significantly longer survival than those with poor predicted outcome (P < .001). For the OS end point, a 10-gene model had a predictive accuracy (ie, concordance index) of 0.66 in the training set and a concordance index of 0.83 in the validation set. Dichotomization of the samples on the basis of the median score resulted in significant differences in survival (P = .002). For both end points, the gene-based predictor was an independent prognostic factor in a multivariate model that included clinical risk stratification (P < .01 for both). CONCLUSION We have identified gene expression signatures that accurately predict outcome in patients with GCTs. These predictive genes should be useful for the prediction of patient outcome and could provide novel targets for therapeutic intervention.


Modern Pathology | 2009

Testicular mixed germ cell tumors: a morphological and immunohistochemical study using stem cell markers, OCT3/4, SOX2 and GDF3, with emphasis on morphologically difficult-to-classify areas

Anuradha Gopalan; Deepti Dhall; Semra Olgac; Samson W. Fine; James E. Korkola; Jane Houldsworth; R. S. K. Chaganti; George J. Bosl; Victor E. Reuter; Satish K. Tickoo

Stem cell markers, OCT3/4, and more recently SOX2 and growth differentiation factor 3 (GDF3), have been reported to be expressed variably in germ cell tumors. We investigated the immunohistochemical expression of these markers in different testicular germ cell tumors, and their utility in the differential diagnosis of morphologically difficult-to-classify components of these tumors. A total of 50 mixed testicular germ cell tumors, 43 also containing difficult-to-classify areas, were studied. In these areas, multiple morphological parameters were noted, and high-grade nuclear details similar to typical embryonal carcinoma were considered ‘embryonal carcinoma-like high-grade’. Immunohistochemical staining for OCT3/4, c-kit, CD30, SOX2, and GDF3 was performed and graded in each component as 0, negative; 1+, 1–25%; 2+, 26–50%; and 3+, >50% positive staining cells. The different components identified in these tumors were seminoma (8), embryonal carcinoma (50), yolk sac tumor (40), teratoma (40), choriocarcinoma (3) and intra-tubular germ cell neoplasia, unclassified (35). By immunohistochemistry, the staining patterns were OCT3/4 −3+, all seminomas, embryonal carcinomas and intra-tubular germ cell neoplasia; SOX2 −3+, all embryonal carcinomas and −2 to 3+, 11/14 (79%) primitive neuroectodermal components in immature teratomas; GDF3 −2 to 3+, all yolk sac tumors, seminomas and intra-tubular germ cell neoplasia and 1 to 2+, 40/50 embryonal carcinomas. A total of 34/43 (79%) of difficult-to-classify areas stained 3+ for OCT3/4, CD30, and SOX2, similar to embryonal carcinoma. Among these areas, only ‘embryonal carcinoma-like high-grade’ nuclear details were significantly associated with such an immunophenotype. Thus, SOX2 is expressed in embryonal carcinoma and primitive neuroectoderm of teratoma, and unlike OCT3/4, not in intra-tubular germ cell neoplasia and seminoma. Therefore, it may be useful in the distinction of seminoma from embryonal carcinoma, and potentially in diagnosing early carcinomatous differentiation in seminoma. GDF3 positivity, in the absence of OCT3/4 and CD30, combined with morphological features, is helpful in the diagnosis of yolk sac tumor. ‘Embryonal carcinoma-like high-grade’ nuclear details are the most important morphological criterion for the diagnosis of embryonal carcinoma in difficult-to-classify areas.

Collaboration


Dive into the James E. Korkola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. S. K. Chaganti

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

George J. Bosl

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jane Houldsworth

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nora Bayani

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon B. Mills

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge