James E. Ussher
University of Otago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James E. Ussher.
European Journal of Immunology | 2014
James E. Ussher; Matthew Bilton; Emma Attwod; Jonathan Shadwell; Rachel Richardson; Catherine de Lara; Elisabeth Mettke; Ayako Kurioka; Ted H. Hansen; Paul Klenerman; Christian B. Willberg
CD161++CD8+ T cells represent a novel subset that is dominated in adult peripheral blood by mucosal‐associated invariant T (MAIT) cells, as defined by the expression of a variable‐α chain 7.2 (Vα7.2)‐Jα33 TCR, and IL‐18Rα. Stimulation with IL‐18+IL‐12 is known to induce IFN‐γ by both NK cells and, to a more limited extent, T cells. Here, we show the CD161++ CD8+ T‐cell population is the primary T‐cell population triggered by this mechanism. Both CD161++Vα7.2+ and CD161++Vα7.2− T‐cell subsets responded to IL‐12+IL‐18 stimulation, demonstrating this response was not restricted to the MAIT cells, but to the CD161++ phenotype. Bacteria and TLR agonists also indirectly triggered IFN‐γ expression via IL‐12 and IL‐18. These data show that CD161++ T cells are the predominant T‐cell population that responds directly to IL‐12+IL‐18 stimulation. Furthermore, our findings broaden the potential role of MAIT cells beyond bacterial responsiveness to potentially include viral infections and other inflammatory stimuli.
Mucosal Immunology | 2015
Ayako Kurioka; James E. Ussher; Cormac Cosgrove; C Clough; Joannah R. Fergusson; Kevin Smith; Yu-Hoi Kang; Lucy J. Walker; Ted H. Hansen; Christian B. Willberg; Paul Klenerman
Mucosal-associated invariant T (MAIT) cells are an innate-like T-cell population restricted by the non-polymorphic, major histocompatibility complex class I-related protein 1, MR1. MAIT cells are activated by a broad range of bacteria through detection of riboflavin metabolites bound by MR1, but their direct cytolytic capacity upon recognition of cognate target cells remains unclear. We show that resting human MAIT cells are uniquely characterized by a lack of granzyme (Gr) B and low perforin expression, key granule proteins required for efficient cytotoxic activity, but high levels of expression of GrA and GrK. Bacterial activation of MAIT cells rapidly induced GrB and perforin, licensing these cells to kill their cognate target cells. Using a novel flow cytometry-based killing assay, we show that licensed MAIT cells, but not ex vivo MAIT cells from the same donors, can efficiently kill Escherichia coli-exposed B-cell lines in an MR1- and degranulation-dependent manner. Finally, we show that MAIT cells are highly proliferative in response to antigenic and cytokine stimulation, maintaining high expression of GrB, perforin, and GrA, but reduced expression of GrK following antigenic proliferation. The tightly regulated cytolytic capacity of MAIT cells may have an important role in the control of intracellular bacterial infections, such as Mycobacterium tuberculosis.
PLOS Pathogens | 2014
Juandy Jo; Anthony T. Tan; James E. Ussher; Elena Sandalova; Xin-Zi Tang; A. Tan-Garcia; Natalie To; Michelle Hong; Adeline Chia; Upkar S. Gill; P. Kennedy; K.C. Tan; Kang Hoe Lee; Gennaro De Libero; Adam J. Gehring; Christian B. Willberg; Paul Klenerman; Antonio Bertoletti
The ability of innate immune cells to sense and respond to impending danger varies by anatomical location. The liver is considered tolerogenic but is still capable of mounting a successful immune response to clear various infections. To understand whether hepatic immune cells tune their response to different infectious challenges, we probed mononuclear cells purified from human healthy and diseased livers with distinct pathogen-associated molecules. We discovered that only the TLR8 agonist ssRNA40 selectively activated liver-resident innate immune cells to produce substantial quantities of IFN-γ. We identified CD161Bright mucosal-associated invariant T (MAIT) and CD56Bright NK cells as the responding liver-resident innate immune cells. Their activation was not directly induced by the TLR8 agonist but was dependent on IL-12 and IL-18 production by ssRNA40-activated intrahepatic monocytes. Importantly, the ssRNA40-induced cytokine-dependent activation of MAIT cells mirrored responses induced by bacteria, i.e., generating a selective production of high levels of IFN-γ, without the concomitant production of TNF-α or IL-17A. The intrahepatic IFN-γ production could be detected not only in healthy livers, but also in HBV- or HCV-infected livers. In conclusion, the human liver harbors a network of immune cells able to modulate their immunological responses to different pathogen-associated molecules. Their ability to generate a strong production of IFN-γ upon stimulation with TLR8 agonist opens new therapeutic opportunities for the treatment of diverse liver pathologies.
Cell Reports | 2014
Joannah R. Fergusson; Kira E. Smith; Vicki M. Fleming; Neil Rajoriya; Evan W. Newell; Ruth Simmons; Emanuele Marchi; Sophia Björkander; Yu-Hoi Kang; Leo Swadling; Ayako Kurioka; Natasha Sahgal; Helen Lockstone; Dilair Baban; Gordon J. Freeman; Eva Sverremark-Ekström; Mark M. Davis; Miles P. Davenport; Vanessa Venturi; James E. Ussher; Christian B. Willberg; Paul Klenerman
Summary The C-type lectin CD161 is expressed by a large proportion of human T lymphocytes of all lineages, including a population known as mucosal-associated invariant T (MAIT) cells. To understand whether different T cell subsets expressing CD161 have similar properties, we examined these populations in parallel using mass cytometry and mRNA microarray approaches. The analysis identified a conserved CD161++/MAIT cell transcriptional signature enriched in CD161+CD8+ T cells, which can be extended to CD161+ CD4+ and CD161+TCRγδ+ T cells. Furthermore, this led to the identification of a shared innate-like, TCR-independent response to interleukin (IL)-12 plus IL-18 by different CD161-expressing T cell populations. This response was independent of regulation by CD161, which acted as a costimulatory molecule in the context of T cell receptor stimulation. Expression of CD161 hence identifies a transcriptional and functional phenotype, shared across human T lymphocytes and independent of both T cell receptor (TCR) expression and cell lineage.
Frontiers in Immunology | 2014
James E. Ussher; Paul Klenerman; Chris B. Willberg
Mucosal-associated invariant T (MAIT) cells are an innate-like T-cell population involved in anti-bacterial immunity. In human beings, MAIT cells are abundant, comprising ~10% of the CD8+ T-cell compartment in blood. They are enriched at mucosal sites and are particularly prevalent within the liver. MAIT cells are defined by the expression of a semi-invariant T-cell receptor (Vα7.2-Jα33/12/20) and are restricted by the non-polymorphic, highly evolutionarily conserved MHC class Ib molecule, MHC-related protein (MR)1. MR1 has recently been shown to present an unstable pyrimidine intermediate derived from a biosynthetic precursor of riboflavin; riboflavin biosynthesis occurs in many bacteria but not in human beings. Consistent with this, MAIT cells are responsive to riboflavin-metabolizing bacteria, including Salmonella. In mouse models, MAIT cells have been shown to play a non-redundant role in anti-bacterial immunity, including against Escherichia coli, Klebsiella pneumoniae, and Mycobacterium bovis BCG. In human beings, MAIT cells are decreased in frequency in the blood of patients with tuberculosis or pneumonia, and their frequency has been inversely correlated with the risk of subsequent systemic bacterial infection in patients in intensive care. Intriguingly, MAIT cells are also depleted from the blood early in HIV infection and fail to recover with anti-retroviral therapy, which may contribute to the susceptibility of patients infected with HIV to certain bacterial infections, including non-typhoidal Salmonella. In this review, we will discuss what is currently known about MAIT cells, the role that Salmonella has played in elucidating MAIT cell restriction and function, and the role MAIT cells might play in the control of Salmonella infection.
Clinical Infectious Diseases | 2007
James E. Ussher; Elizabeth Wilson; Silvana Campanella; Susan Taylor; Sally Roberts
Chancroid is a sexually transmitted infection associated with genital ulceration and lymphadenopathy caused by Haemophilus ducreyi. Localized skin infections, in the absence of genital lesions, have not been previously reported. We report 3 cases of lower limb ulceration in children caused by H. ducreyi and postulate that H. ducreyi may be a previously unrecognized cause of chronic skin ulceration.
European Journal of Immunology | 2016
James E. Ussher; Bonnie van Wilgenburg; Rachel F. Hannaway; Kerstin Ruustal; Prabhjeet Phalora; Ayako Kurioka; Ted H. Hansen; Christian B. Willberg; Rodney E. Phillips; Paul Klenerman
Mucosal‐associated invariant T (MAIT) cells are an abundant innate‐like T lymphocyte population that are enriched in liver and mucosal tissues. They are restricted by MR1, which presents antigens derived from a metabolic precursor of riboflavin synthesis, a pathway present in many microbial species, including commensals. Therefore, MR1‐mediated MAIT cell activation must be tightly regulated to prevent inappropriate activation and immunopathology. Using an in vitro model of MR1‐mediated activation of primary human MAIT cells, we investigated the mechanisms by which it is regulated. Uptake of intact bacteria by antigen presenting cells (APCs) into acidified endolysosomal compartments was required for efficient MR1‐mediated MAIT cell activation, while stimulation with soluble ligand was inefficient. Consistent with this, little MR1 was seen at the surface of human monocytic (THP1) and B‐cell lines. Activation with a TLR ligand increased the amount of MR1 at the surface of THP1 but not B‐cell lines, suggesting differential regulation in different cell types. APC activation and NF‐κB signaling were critical for MR1‐mediated MAIT cell activation. In primary cells, however, prolonged TLR signaling led to downregulation of MR1‐mediated MAIT cell activation. Overall, MR1‐mediated MAIT cell activation is a tightly regulated process, dependent on integration of innate signals by APCs.
Journal of Virology | 2013
Yi Ge; Ashley Mansell; James E. Ussher; Anna E. S. Brooks; Kristy Manning; Carol J. H. Wang; John A. Taylor
ABSTRACT Nonstructural protein 4 (NSP4), encoded by rotavirus, exhibits various properties linked to viral pathogenesis, including enterotoxic activity. A recent study (O. V. Kavanagh et al., Vaccine 28:3106-3111, 2010) indicated that NSP4 also has adjuvant properties, suggesting a possible role in the innate immune response to rotavirus infection. We report here that NSP4 purified from the medium of rotavirus-infected Caco-2 cells triggers the secretion of proinflammatory cytokines from macrophage-like THP-1 cells and nitric oxide from murine RAW 264.7 cells. Secretion is accompanied by the stimulation of p38 and JNK mitogen-activated protein kinases (MAPKs) and nuclear factor NF-κB. NSP4 triggered the secretion of cytokines from murine macrophages derived from wild-type but not MyD88−/− or Toll-like receptor 2 (TLR2−/−) mice and induced secretion of interleukin-8 (IL-8) from human embryonic kidney cells transfected with TLR2 but not TLR4. Our studies identify NSP4 as a pathogen-associated molecular pattern (PAMP) encoded by rotavirus and provide a mechanism for the production of proinflammatory cytokines associated with the clinical symptoms of infection in humans and animals.
The Journal of Allergy and Clinical Immunology | 2015
Luzheng Xue; Joannah R. Fergusson; Maryam Salimi; Isabel Panse; James E. Ussher; Ahmed N. Hegazy; Shân L. Vinall; David G. Jackson; Michael George Hunter; Roy Pettipher; Graham S. Ogg; Paul Klenerman
Background Prostaglandin D2 (PGD2) and cysteinyl leukotrienes (cysLTs) are lipid mediators derived from mast cells, which activate TH2 cells. The combination of PGD2 and cysLTs (notably cysteinyl leukotriene E4 [LTE4]) enhances TH2 cytokine production. However, the synergistic interaction of cysLTs with PGD2 in promoting TH2 cell activation is still poorly understood. The receptors for these mediators are drug targets in the treatment of allergic diseases, and hence understanding their interaction is likely to have clinical implications. Objective We aimed to comprehensively define the roles of PGD2, LTE4, and their combination in activating human TH2 cells and how such activation might allow the TH2 cells to engage downstream effectors, such as neutrophils, which contribute to the pathology of allergic responses. Methods The effects of PGD2, LTE4, and their combination on human TH2 cell gene expression were defined by using a microarray, and changes in specific inflammatory pathways were confirmed by means of PCR array, quantitative RT-PCR, ELISA, Luminex, flow cytometry, and functional assays, including analysis of downstream neutrophil activation. Blockade of PGD2 and LTE4 was tested by using TM30089, an antagonist of chemoattractant receptor-homologous molecule expressed on TH2 cells, and montelukast, an antagonist of cysteinyl leukotriene receptor 1. Results PGD2 and LTE4 altered the transcription of a wide range of genes and induced diverse functional responses in TH2 cells, including cell adhesion, migration, and survival and cytokine production. The combination of these lipids synergistically or additively enhanced TH2 responses and, strikingly, induced marked production of diverse nonclassical TH2 inflammatory mediators, including IL-22, IL-8, and GM-CSF, at concentrations sufficient to affect neutrophil activation. Conclusions PGD2 and LTE4 activate TH2 cells through different pathways but act synergistically to promote multiple downstream effector functions, including neutrophil migration and survival. Combined inhibition of both PGD2 and LTE4 pathways might provide an effective therapeutic strategy for allergic responses, particularly those involving interaction between TH2 cells and neutrophils, such as in patients with severe asthma.
Human Gene Therapy | 2010
James E. Ussher; John A. Taylor
Dendritic cells are the key antigen-presenting cells involved in the initiation of the adaptive immune response. Recombinant adeno-associated viruses (rAAVs) can transduce dendritic cells and have gained attention as potential vaccines capable of stimulating T cell immunity. Here we show that rAAV2 pseudotyped with type 6 capsid (rAAV2/6) exhibits significantly higher tropism for human monocyte-derived dendritic cells (MoDCs) than other serotypes and variants. Transduction was abolished by a single lysine-to-alanine mutation within the AAV6 capsid previously shown to inhibit binding to heparin. However, unlike rAAV2, soluble heparin did not inhibit rAAV2/6 transduction of MoDCs. Further enhancement of MoDC transduction was observed after mutation of Tyr-731 in the capsid of AAV6 consistent with a report that tyrosine residues are phosphorylated, leading to ubiquitination of capsids during uptake. Pseudotyped rAAV2/6 vectors containing a Y731F mutation minimally altered the immunophenotype of MoDCs, which retained their immunostimulatory ability and were able to stimulate an antigen-specific CD8(+) T cell clone. These findings should assist in the development of rAAV2/6 as a vaccine vector.