Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James F. Amatruda is active.

Publication


Featured researches published by James F. Amatruda.


Nature Chemical Biology | 2009

Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer

Baozhi Chen; Michael E. Dodge; Wei Tang; Jianming Lu; Zhiqiang Ma; Chih Wei Fan; Shuguang Wei; Wayne Hao; Jessica A. Kilgore; Noelle S. Williams; Michael G. Roth; James F. Amatruda; Chuo Chen; Lawrence Lum

SUMMARY The pervasive influence of secreted Wnt signaling proteins in tissue homeostasis and tumorigenesis has galvanized efforts to identify small molecules that target Wnt-mediated cellular responses. By screening a diverse synthetic chemical library, we have discovered two novel classes of small molecules that disrupt Wnt pathway responses - whereas one class inhibits the activity of Porcupine (Porcn), a membrane-bound acyltransferase that is essential to the production of Wnt proteins, the other abrogates destruction of Axin proteins, suppressors of Wnt/β-catenin pathway activity. With these small molecules we establish a chemical genetic approach for studying Wnt pathway responses and stem cell function in adult tissue. We achieve transient, reversible suppression of Wnt/β-catenin pathway response in vivo, and establish a mechanism-based approach to target cancerous cell growth. The signal transduction mechanisms shown here to be chemically tractable additionally contribute to Wnt-independent signal transduction pathways and thus could be broadly exploited for chemical genetics and therapeutic goals.


Current Biology | 2005

BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with p53 in the Genesis of Melanoma

Elizabeth Patton; Hans R. Widlund; Jeffery L. Kutok; Kamden R. Kopani; James F. Amatruda; Ryan D. Murphey; Stephane Berghmans; Elizabeth A. Mayhall; David Traver; Christopher D. M. Fletcher; Scott R. Granter; A. Thomas Look; Charles Lee; David E. Fisher; Leonard I. Zon

Melanoma is the most lethal form of skin cancer, and the incidence and mortality rates are rapidly rising. Epidemiologically, high numbers of nevi (moles) are associated with higher risk of melanoma . The majority of melanomas exhibit activating mutations in the serine/threonine kinase BRAF . BRAF mutations may be critical for the initiation of melanoma ; however, the direct role of BRAF in nevi and melanoma has not been tested in an animal model. To directly test the role of activated BRAF in nevus and melanoma development, we have generated transgenic zebrafish expressing the most common BRAF mutant form (V600E) under the control of the melanocyte mitfa promoter. Expression of mutant, but not wild-type, BRAF led to dramatic patches of ectopic melanocytes, which we have termed fish (f)-nevi. Remarkably, in p53-deficient fish, activated BRAF induced formation of melanocyte lesions that rapidly developed into invasive melanomas, which resembled human melanomas and could be serially transplanted. These data provide direct evidence that BRAF activation is sufficient for f-nevus formation, that BRAF activation is among the primary events in melanoma development, and that the p53 and BRAF pathways interact genetically to produce melanoma.


Cancer Cell | 2002

Zebrafish as a cancer model system

James F. Amatruda; Jennifer Shepard; Howard M. Stern; Leonard I. Zon

The zebrafish, with its combination of forward genetics and vertebrate biology, has great potential as a cancer model system.


Cell | 2014

The Oxygen-Rich Postnatal Environment Induces Cardiomyocyte Cell-Cycle Arrest through DNA Damage Response

Bao N. Puente; Wataru Kimura; Shalini Muralidhar; Jesung Moon; James F. Amatruda; Katherine J Phelps; David Grinsfelder; Beverly A. Rothermel; Rui Chen; Joseph A. Garcia; Celio X.C. Santos; Suwannee Thet; Eiichiro Mori; Michael Kinter; Paul M. Rindler; Serena Zacchigna; Shibani Mukherjee; David J. Chen; Ahmed I. Mahmoud; Mauro Giacca; Peter S. Rabinovitch; Asaithamby Aroumougame; Ajay M. Shah; Luke I. Szweda; Hesham A. Sadek

The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary postnatal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen-rich postnatal environment is the upstream signal that results in cell-cycle arrest of cardiomyocytes. Here, we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, whereas hyperoxemia and ROS generators shorten it. These findings uncover a protective mechanism that mediates cardiomyocyte cell-cycle arrest in exchange for utilization of oxygen-dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be an important component of cardiomyocyte proliferation-based therapeutic approaches.


Bioorganic & Medicinal Chemistry Letters | 2009

Structure/Activity Relationship Studies of Small-Molecule Inhibitors of Wnt Response

Jianming Lu; Zhiqiang Ma; Jen-Chieh Hsieh; Chih Wei Fan; Baozhi Chen; Jamie Longgood; Noelle S. Williams; James F. Amatruda; Lawrence Lum; Chuo Chen

Suppression of oncogenic Wnt-mediated signaling holds promise as an anti-cancer therapeutic strategy. We previously reported a novel class of small molecules (IWR-1/2, inhibitors of Wnt response) that antagonize Wnt signaling by stabilizing the Axin destruction complex. Herein, we present the results of structure-activity relationship studies of these compounds.


International Review of Cell and Molecular Biology | 2008

GENETIC MODELS OF CANCER IN ZEBRAFISH

James F. Amatruda; E. Elizabeth Patton

Firmly established as a model system for development, the zebrafish is now emerging as an effective system for the study of the fundamental aspects of tumorigenesis. In keeping with the striking anatomical and physiological similarity between fish and mammals, zebrafish develop a wide spectrum of cancers resembling human malignancies. The potential for zebrafish as a cancer model derives from its strengths as an experimental system for developmental biology. Despite 450 million years of evolutionary distance, the pathways that govern vertebrate development including signaling, proliferation, cell movements, differentiation, and apoptosis-indeed, the same pathways that are often misregulated in tumorigenesis-are highly conserved between humans and zebrafish. This, together with a complete genome sequence and an array of tools for gene manipulation, makes the construction of robust, physiological zebrafish cancer models increasingly possible.


Science | 2012

C/EBP Transcription Factors Mediate Epicardial Activation During Heart Development and Injury

Guo N. Huang; Jeffrey E. Thatcher; John McAnally; Yongli Kong; Xiaoxia Qi; Wei Tan; J. Michael DiMaio; James F. Amatruda; Robert D. Gerard; Joseph A. Hill; Rhonda Bassel-Duby; Eric N. Olson

Enhancing Heart Function The epicardium, a protective layer of tissue surrounding the mammalian heart, plays a critical role during embryogenesis because it supplies growth factors and multipotent progenitor cells essential for heart development. In adults, the epicardium is dormant but it becomes reactivated when the heart is injured, a response that leads to re-expression of developmental genes. Studying mouse models, Huang et al. (p. 1599, published online 15 November; see the Perspective by Rosenzweig) found that the C/EBP transcription factors activated the epicardium during development and injury. Blockade of C/EBP signaling in the epicardium of injured (ischemic) hearts reduced inflammation and improved heart function, a finding that could ultimately lead to new strategies for the repair of heart damage. Transcriptional mechanisms controlling gene expression in the heart’s outer layer are exploited for cardiac repair. The epicardium encapsulates the heart and functions as a source of multipotent progenitor cells and paracrine factors essential for cardiac development and repair. Injury of the adult heart results in reactivation of a developmental gene program in the epicardium, but the transcriptional basis of epicardial gene expression has not been delineated. We established a mouse embryonic heart organ culture and gene expression system that facilitated the identification of epicardial enhancers activated during heart development and injury. Epicardial activation of these enhancers depends on a combinatorial transcriptional code centered on CCAAT/enhancer binding protein (C/EBP) transcription factors. Disruption of C/EBP signaling in the adult epicardium reduced injury-induced neutrophil infiltration and improved cardiac function. These findings reveal a transcriptional basis for epicardial activation and heart injury, providing a platform for enhancing cardiac regeneration.


Nature Communications | 2014

Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours

Dinesh Rakheja; Kenneth S. Chen; Yangjian Liu; Abhay A. Shukla; Vanessa Schmid; Tsung Cheng Chang; Shama Khokhar; Jonathan E. Wickiser; Nitin J. Karandikar; James S. Malter; Joshua T. Mendell; James F. Amatruda

Wilms tumour is the most common childhood kidney cancer. Here we report the whole-exome sequencing of 44 Wilms tumours, identifying missense mutations in the microRNA (miRNA)-processing enzymes DROSHA and DICER1, and novel mutations in MYCN, SMARCA4 and ARID1A. Examination of tumour miRNA expression, in vitro processing assays and genomic editing in human cells demonstrates that DICER1 and DROSHA mutations influence miRNA processing through distinct mechanisms. DICER1 RNase IIIB mutations preferentially impair processing of miRNAs deriving from the 5′-arm of pre-miRNA hairpins, while DROSHA RNase IIIB mutations globally inhibit miRNA biogenesis through a dominant-negative mechanism. Both DROSHA and DICER1 mutations impair expression of tumour-suppressing miRNAs, including the let-7 family, important regulators of MYCN, LIN28 and other Wilms tumour oncogenes. These results provide new insights into the mechanisms through which mutations in miRNA biogenesis components reprogramme miRNA expression in human cancer and suggest that these defects define a distinct subclass of Wilms tumours.


Nature Reviews Cancer | 2009

p53 ancestry: gazing through an evolutionary lens

Wan-Jin Lu; James F. Amatruda; John M. Abrams

Evolutionary patterns indicate that primordial p53 genes predated the appearance of cancer. Therefore, wild-type tumour suppressive functions and mutant oncogenic functions that give celebrity status to this gene family were probably co-opted from unrelated primordial activities. Is it possible to deduce what these early functions might have been? And might this knowledge provide a platform for therapeutic opportunities?


Journal of Clinical Investigation | 2014

PAX7 expression defines germline stem cells in the adult testis

Gina M. Aloisio; Yuji Nakada; Hatice D. Saatcioglu; Christopher G. Peña; Michael D. Baker; Edward Tarnawa; Jishnu Mukherjee; Hema Manjunath; Abhijit Bugde; Anita Sengupta; James F. Amatruda; Ileana Cuevas; F. Kent Hamra; Diego H. Castrillon

Spermatogenesis is a complex, multistep process that maintains male fertility and is sustained by rare germline stem cells. Spermatogenic progression begins with spermatogonia, populations of which express distinct markers. The identity of the spermatogonial stem cell population in the undisturbed testis is controversial due to a lack of reliable and specific markers. Here we identified the transcription factor PAX7 as a specific marker of a rare subpopulation of A(single) spermatogonia in mice. PAX7+ cells were present in the testis at birth. Compared with the adult testis, PAX7+ cells constituted a much higher percentage of neonatal germ cells. Lineage tracing in healthy adult mice revealed that PAX7+ spermatogonia self-maintained and produced expanding clones that gave rise to mature spermatozoa. Interestingly, in mice subjected to chemotherapy and radiotherapy, both of which damage the vast majority of germ cells and can result in sterility, PAX7+ spermatogonia selectively survived, and their subsequent expansion contributed to the recovery of spermatogenesis. Finally, PAX7+ spermatogonia were present in the testes of a diverse set of mammals. Our data indicate that the PAX7+ subset of A(single) spermatogonia functions as robust testis stem cells that maintain fertility in normal spermatogenesis in healthy mice and mediate recovery after severe germline injury, such as occurs after cancer therapy.

Collaboration


Dive into the James F. Amatruda's collaboration.

Top Co-Authors

Avatar

Dinesh Rakheja

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mark Krailo

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Carlos Rodriguez-Galindo

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Kenneth S. Chen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Nicholson

Cambridge University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Leonard I. Zon

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge