Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James F. Collawn is active.

Publication


Featured researches published by James F. Collawn.


FEBS Journal | 2001

Receptor-mediated uptake of peptides that bind the human transferrin receptor

Jeffrey A. Engler; Jae Hwy Lee; James F. Collawn; Bryan A. Moore

A biopanning process designed to find peptide epitopes specific for cell surface receptors has been used in this study to select seven- and 12-amino-acid peptides capable of binding to and internalizing with the human transferrin receptor (hTfR). Through sequential rounds of negative and positive selection, two peptide sequences were identified that specifically bind to the hTfR. Phage containing the sequences HAIYPRH or THRPPMWSPVWP were inhibited from binding the hTfR in a dose-dependent fashion when peptides of the same sequence were present in a competition assay. Interestingly, transferrin did not compete with either of these sequences for receptor binding, suggesting that these peptides bind a site on the hTfR distinct from the transferrin binding site. When either of these sequences was expressed as a fusion to green fluorescent protein (GFP), the recombinant GFP molecule was internalized in cells expressing the hTfR. These studies suggest that the two peptides can be used to target other proteins into the endosomal pathway. Further, they provide a strategy for identifying peptides that bind to other cell surface receptors that can be used for both diagnostic and therapeutic purposes.


The Journal of Physiology | 2005

Failure of cAMP agonists to activate rescued ΔF508 CFTR in CFBE41o– airway epithelial monolayers

Zsuzsa Bebok; James F. Collawn; John K. Wakefield; William B. Parker; Yao Li; Karoly Varga; Eric J. Sorscher; John P. Clancy

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP‐regulated chloride channel. Mutations in the CFTR gene result in cystic fibrosis (CF). The most common mutation, ΔF508, results in endoplasmic reticulum‐associated degradation (ERAD) of CFTR. ΔF508 CFTR has been described as a temperature‐sensitive mutation that can be rescued following growth at 27°C. In order to study the processing and function of wild‐type and rescued ΔF508 CFTR at the cell surface under non‐polarized and polarized conditions, we developed stable cell lines expressing ΔF508 or wild‐type CFTR. CFBE41o– is a human airway epithelial cell line capable of forming high resistance, polarized monolayers when cultured on permeable supports, while HeLa cells are normally grown under non‐polarizing conditions. Immunoprecipitation, cell surface biotinylation, immunofluorescence, and functional assays confirmed the presence of ΔF508 CFTR at the cell surface in both cell lines after incubating the cells for 48 h at 27°C. However, stimulators of wild‐type CFTR such as forskolin, β2‐adrenergic or A2B‐adenosine receptor agonists failed to activate rescued ΔF508 CFTR in CFBE41o– monolayers. Rescued ΔF508 CFTR could be stimulated with genistein independent of pretreatment with cAMP signalling agonists. Interestingly, rescued ΔF508 CFTR in HeLa cells could be efficiently stimulated with either forskolin or genistein to promote Cl– transport. These results indicate that ΔF508 CFTR, when rescued in CFBE41o– human airway epithelial cells, is poorly responsive to signalling pathways known to regulate wild‐type CFTR. Furthermore, the differences in rescue and activation of ΔF508 CFTR in the two cell lines suggest that cell‐type specific differences in ΔF508 CFTR processing are likely to complicate efforts to identify potentiators and/or correctors of the ΔF508 defect.


Journal of Biological Chemistry | 2010

A synonymous single nucleotide polymorphism in δF508 CFTR alters the secondary structure of the mRNA and the expression of the mutant protein

Rafal Bartoszewski; Michael Jablonsky; Sylwia Bartoszewska; Lauren Stevenson; Qun Dai; John C. Kappes; James F. Collawn; Zsuzsa Bebok

Recent advances in our understanding of translational dynamics indicate that codon usage and mRNA secondary structure influence translation and protein folding. The most frequent cause of cystic fibrosis (CF) is the deletion of three nucleotides (CTT) from the cystic fibrosis transmembrane conductance regulator (CFTR) gene that includes the last cytosine (C) of isoleucine 507 (Ile507ATC) and the two thymidines (T) of phenylalanine 508 (Phe508TTT) codons. The consequences of the deletion are the loss of phenylalanine at the 508 position of the CFTR protein (ΔF508), a synonymous codon change for isoleucine 507 (Ile507ATT), and protein misfolding. Here we demonstrate that the ΔF508 mutation alters the secondary structure of the CFTR mRNA. Molecular modeling predicts and RNase assays support the presence of two enlarged single stranded loops in the ΔF508 CFTR mRNA in the vicinity of the mutation. The consequence of ΔF508 CFTR mRNA “misfolding” is decreased translational rate. A synonymous single nucleotide variant of the ΔF508 CFTR (Ile507ATC), that could exist naturally if Phe-508 was encoded by TTC, has wild type-like mRNA structure, and enhanced expression levels when compared with native ΔF508 CFTR. Because CFTR folding is predominantly cotranslational, changes in translational dynamics may promote ΔF508 CFTR misfolding. Therefore, we propose that mRNA “misfolding” contributes to ΔF508 CFTR protein misfolding and consequently to the severity of the human ΔF508 phenotype. Our studies suggest that in addition to modifier genes, SNPs may also contribute to the differences observed in the symptoms of various ΔF508 homozygous CF patients.


Journal of Biological Chemistry | 2004

Efficient Intracellular Processing of the Endogenous Cystic Fibrosis Transmembrane Conductance Regulator in Epithelial Cell Lines

Karoly Varga; Asta Jurkuvenaite; John K. Wakefield; Jeong S. Hong; Jennifer S. Guimbellot; Charles J. Venglarik; Ashutosh Niraj; Marina Mazur; Eric J. Sorscher; James F. Collawn; Zsuzsa Bebok

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent protein kinase A-activated chloride channel that resides on the apical surface of epithelial cells. One unusual feature of this protein is that during biogenesis, ∼75% of wild type CFTR is degraded by the endoplasmic reticulum (ER)-associated degradative (ERAD) pathway. Examining the biogenesis and structural instability of the molecule has been technically challenging due to the limited amount of CFTR expressed in epithelia. Consequently, investigators have employed heterologous overexpression systems. Based on recent results that epithelial specific factors regulate both CFTR biogenesis and function, we hypothesized that CFTR biogenesis in endogenous CFTR expressing epithelial cells may be more efficient. To test this, we compared CFTR biogenesis in two epithelial cell lines endogenously expressing CFTR (Calu-3 and T84) with two heterologous expression systems (COS-7 and HeLa). Consistent with previous reports, 20 and 35% of the newly synthesized CFTR were converted to maturely glycosylated CFTR in COS-7 and HeLa cells, respectively. In contrast, CFTR maturation was virtually 100% efficient in Calu-3 and T84 cells. Furthermore, inhibition of the proteasome had no effect on CFTR biogenesis in Calu-3 cells, whereas it stabilized the immature form of CFTR in HeLa cells. Quantitative reverse transcriptase-PCR indicated that CFTR message levels are ∼4-fold lower in Calu-3 than HeLa cells, yet steady-state protein levels are comparable. Our results question the structural instability model of wild type CFTR and indicate that epithelial cells endogenously expressing CFTR efficiently process this protein to post-Golgi compartments.


Journal of Biological Chemistry | 1999

Efficient Endocytosis of the Cystic Fibrosis Transmembrane Conductance Regulator Requires a Tyrosine-based Signal

Lawrence S. Prince; Krisztina Peter; Sean R. Hatton; Lolita Zaliauskiene; Laura F. Cotlin; John P. Clancy; Richard B. Marchase; James F. Collawn

We previously demonstrated that the cystic fibrosis transmembrane conductance regulator (CFTR) is rapidly endocytosed in epithelial cells (Prince, L. S., Workman, R. B., Jr., and Marchase, R. B. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 5192–5196). To determine the structural features of CFTR required for endocytosis, we prepared chimeric molecules consisting of the amino-terminal (residues 2–78) and carboxyl-terminal tail regions (residues 1391–1476) of CFTR, each fused to the transmembrane and extracellular domains of the transferrin receptor. Functional analysis of the CFTR-(2–78) and CFTR-(1391–1476) indicated that both chimeras were rapidly internalized. Deletion of residues 1440–1476 had no effect on chimera internalization. Mutations of potential internalization signals in both cytoplasmic domains reveal that only one mutation inhibits internalization, Y1424A. Using a surface biotinylation reaction, we also examined internalization rates of wild type and mutant CFTRs expressed in COS-7 cells. We found that both wild type and A1440X CFTR were rapidly internalized, whereas the Y1424A CFTR mutant, like the chimeric protein, had ∼40% reduced internalization activity. Deletions in the amino-terminal tail region of CFTR resulted in defective trafficking of CFTR out of the endoplasmic reticulum to the cell surface, suggesting that an intact amino terminus is critical for biosynthesis. In summary, our results suggest that both tail regions of CFTR are sufficient to promote rapid internalization of a reporter molecule and that tyrosine 1424 is required for efficient CFTR endocytosis.


Biochemical Journal | 2008

Enhanced cell-surface stability of rescued DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) by pharmacological chaperones.

Karoly Varga; Rebecca F. Goldstein; Asta Jurkuvenaite; Lan Chen; Sadis Matalon; Eric J. Sorscher; Zsuzsa Bebok; James F. Collawn

Misfolded proteins destined for the cell surface are recognized and degraded by the ERAD [ER (endoplasmic reticulum) associated degradation] pathway. TS (temperature-sensitive) mutants at the permissive temperature escape ERAD and reach the cell surface. In this present paper, we examined a TS mutant of the CFTR [CF (cystic fibrosis) transmembrane conductance regulator], CFTR DeltaF508, and analysed its cell-surface trafficking after rescue [rDeltaF508 (rescued DeltaF508) CFTR]. We show that rDeltaF508 CFTR endocytosis is 6-fold more rapid (approximately 30% per 2.5 min) than WT (wild-type, approximately 5% per 2.5 min) CFTR at 37 degrees C in polarized airway epithelial cells (CFBE41o-). We also investigated rDeltaF508 CFTR endocytosis under two further conditions: in culture at the permissive temperature (27 degrees C) and following treatment with pharmacological chaperones. At low temperature, rDeltaF508 CFTR endocytosis slowed to WT rates (20% per 10 min), indicating that the cell-surface trafficking defect of rDeltaF508 CFTR is TS. Furthermore, rDeltaF508 CFTR is stabilized at the lower temperature; its half-life increases from <2 h at 37 degrees C to >8 h at 27 degrees C. Pharmacological chaperone treatment at 37 degrees C corrected the rDeltaF508 CFTR internalization defect, slowing endocytosis from approximately 30% per 2.5 min to approximately 5% per 2.5 min, and doubled DeltaF508 surface half-life from 2 to 4 h. These effects are DeltaF508 CFTR-specific, as pharmacological chaperones did not affect WT CFTR or transferrin receptor internalization rates. The results indicate that small molecular correctors may reproduce the effect of incubation at the permissive temperature, not only by rescuing DeltaF508 CFTR from ERAD, but also by enhancing its cell-surface stability.


Journal of Biological Chemistry | 2011

The Unfolded Protein Response (UPR)-activated Transcription Factor X-box-binding Protein 1 (XBP1) Induces MicroRNA-346 Expression That Targets the Human Antigen Peptide Transporter 1 (TAP1) mRNA and Governs Immune Regulatory Genes

Rafal Bartoszewski; Joseph W. Brewer; Andras Rab; David K. Crossman; Sylwia Bartoszewska; Niren Kapoor; Catherine M. Fuller; James F. Collawn; Zsuzsa Bebok

Background: The adaptive unfolded protein response (UPR) promotes endoplasmic reticulum (ER) expansion and reduces ER load. Results: UPR-activated XBP1 induces miR-346 expression that targets TAP1. Conclusion: We identify a novel function for XBP1 and an miRNA-mediated pathway for ER load reduction through TAP1. Significance: Novel interventions for protein folding disorders will require an understanding of how microRNAs regulate gene expression during ER stress. To identify endoplasmic reticulum (ER) stress-induced microRNAs (miRNA) that govern ER protein influx during the adaptive phase of unfolded protein response, we performed miRNA microarray profiling and analysis in human airway epithelial cells following ER stress induction using proteasome inhibition or tunicamycin treatment. We identified miR-346 as the most significantly induced miRNA by both classic stressors. miR-346 is encoded within an intron of the glutamate receptor ionotropic delta-1 gene (GRID1), but its ER stress-associated expression is independent of GRID1. We demonstrated that the spliced X-box-binding protein-1 (sXBP1) is necessary and sufficient for ER stress-associated miR-346 induction, revealing a novel role for this unfolded protein response-activated transcription factor. In mRNA profiling arrays, we identified 21 mRNAs that were reduced by both ER stress and miR-346. The target genes of miR-346 regulate immune responses and include the major histocompatibility complex (MHC) class I gene products, interferon-induced genes, and the ER antigen peptide transporter 1 (TAP1). Although most of the repressed mRNAs appear to be indirect targets because they lack specific seeding sites for miR-346, we demonstrate that the human TAP1 mRNA is a direct target of miR-346. The human TAP1 mRNA 3′-UTR contains a 6-mer canonical seeding site for miR-346. Importantly, the ER stress-associated reduction in human TAP1 mRNA and protein levels could be reversed with an miR-346 antagomir. Because TAP function is necessary for proper MHC class I-associated antigen presentation, our results provide a novel mechanistic explanation for reduced MHC class I-associated antigen presentation that was observed during ER stress.


American Journal of Respiratory Cell and Molecular Biology | 2008

Activation of the Unfolded Protein Response by ΔF508 CFTR

Rafal Bartoszewski; Andras Rab; Asta Jurkuvenaite; Marina Mazur; John K. Wakefield; James F. Collawn; Zsuzsa Bebok

Environmental insults and misfolded proteins cause endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR). The UPR decreases endogenous cystic fibrosis transmembrane conductance regulator (CFTR) mRNA levels and protein maturation efficiency. Herein, we investigated the effects of the folding-deficient deltaF508 CFTR on ER stress induction and UPR activation. For these studies, we developed and characterized stable clones of Calu3deltaF cells that express different levels of endogenous wild-type (WT) and recombinant deltaF508 CFTR. We also present a novel RT-PCR-based assay for differential quantification of wild-type CFTR mRNA in the presence of deltaF508 CFTR message. The assay is based on a TaqMan minor groove binding (MGB) probe that recognizes a specific TTT sequence (encoding phenylalanine at position 508 in human CFTR). The MGB probe is extremely specific and sensitive to changes in WT CFTR message levels. In RNA samples that contain both WT and deltaF508 CFTR mRNAs, measurement of WT CFTR mRNA levels (using the MGB probe) and total CFTR mRNA (using commercial primers) allowed us to calculate deltaF508 CFTR mRNA levels. The results indicate that overexpression of deltaF508 CFTR causes ER stress and activates the UPR. UPR activation precedes a marked decrease in endogenous WT CFTR mRNA expression. Furthermore, polarized airway epithelial cell lines are important tools in cystic fibrosis research, and herein we provide an airway epithelial model to study the biogenesis and function of WT and deltaF508 CFTR expressed within the same cell.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2013

Cigarette smoke and CFTR: implications in the pathogenesis of COPD

Andras Rab; Steven M. Rowe; S. Vamsee Raju; Zsuzsa Bebok; Sadis Matalon; James F. Collawn

Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder consisting of chronic bronchitis and/or emphysema. COPD patients suffer from chronic infections and display exaggerated inflammatory responses and a progressive decline in respiratory function. The respiratory symptoms of COPD are similar to those seen in cystic fibrosis (CF), although the molecular basis of the two disorders differs. CF is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding a chloride and bicarbonate channel (CFTR), leading to CFTR dysfunction. The majority of COPD cases result from chronic oxidative insults such as cigarette smoke. Interestingly, environmental stresses including cigarette smoke, hypoxia, and chronic inflammation have also been implicated in reduced CFTR function, and this suggests a common mechanism that may contribute to both the CF and COPD. Therefore, improving CFTR function may offer an excellent opportunity for the development of a common treatment for CF and COPD. In this article, we review what is known about the CF respiratory phenotype and discuss how diminished CFTR expression-associated ion transport defects may contribute to some of the pathological changes seen in COPD.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

The CFTR and ENaC debate: how important is ENaC in CF lung disease?

James F. Collawn; Ahmed Lazrak; Zsuzsa Bebok; Sadis Matalon

Cystic fibrosis (CF) is caused by the loss of the cystic fibrosis transmembrane conductance regulator (CFTR) function and results in a respiratory phenotype that is characterized by dehydrated mucus and bacterial infections that affect CF patients throughout their lives. Much of the morbidity and mortality in CF results from a failure to clear bacteria from the lungs. What causes the defect in the bacterial clearance in the CF lung has been the subject of an ongoing debate. Here we discuss the arguments for and against the role of the epithelial sodium channel, ENaC, in the development of CF lung disease.

Collaboration


Dive into the James F. Collawn's collaboration.

Top Co-Authors

Avatar

Zsuzsa Bebok

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Sadis Matalon

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Lianwu Fu

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Andras Rab

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Eric J. Sorscher

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Karoly Varga

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Asta Jurkuvenaite

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Louis J. Dell'Italia

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Pamela C. Powell

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Steven M. Rowe

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge