Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James F. Gusella is active.

Publication


Featured researches published by James F. Gusella.


Cell | 1993

A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes

Marcy E. MacDonald; Christine Ambrose; Mabel P. Duyao; Richard H. Myers; Carol Lin; Lakshmi Srinidhi; Glenn Barnes; Sherryl A. M. Taylor; Marianne James; Nicolet Groot; Heather MacFarlane; Barbara Jenkins; Mary Anne Anderson; Nancy S. Wexler; James F. Gusella; Gillian P. Bates; Sarah Baxendale; Holger Hummerich; Susan Kirby; Mike North; Sandra Youngman; Richard Mott; Günther Zehetner; Zdenek Sedlacek; Annemarie Poustka; Anna-Maria Frischauf; Hans Lehrach; Alan J. Buckler; Deanna Church; Lynn Doucette-Stamm

The Huntingtons disease (HD) gene has been mapped in 4p16.3 but has eluded identification. We have used haplotype analysis of linkage disequilibrium to spotlight a small segment of 4p16.3 as the likely location of the defect. A new gene, IT15, isolated using cloned trapped exons from the target area contains a polymorphic trinucleotide repeat that is expanded and unstable on HD chromosomes. A (CAG)n repeat longer than the normal range was observed on HD chromosomes from all 75 disease families examined, comprising a variety of ethnic backgrounds and 4p16.3 haplotypes. The (CAG)n repeat appears to be located within the coding sequence of a predicted approximately 348 kd protein that is widely expressed but unrelated to any known gene. Thus, the HD mutation involves an unstable DNA segment, similar to those described in fragile X syndrome, spino-bulbar muscular atrophy, and myotonic dystrophy, acting in the context of a novel 4p16.3 gene to produce a dominant phenotype.


The New England Journal of Medicine | 2008

Association between Microdeletion and Microduplication at 16p11.2 and Autism

Lauren A. Weiss; Yiping Shen; Joshua M. Korn; Dan E. Arking; David T. Miller; Ragnheidur Fossdal; Evald Saemundsen; Hreinn Stefansson; Todd Green; Orah S. Platt; Douglas M. Ruderfer; Christopher A. Walsh; David Altshuler; Aravinda Chakravarti; Rudolph E. Tanzi; Kari Stefansson; Susan L. Santangelo; James F. Gusella; Pamela Sklar; Bai-Lin Wu; Mark J. Daly

BACKGROUND Autism spectrum disorder is a heritable developmental disorder in which chromosomal abnormalities are thought to play a role. METHODS As a first component of a genomewide association study of families from the Autism Genetic Resource Exchange (AGRE), we used two novel algorithms to search for recurrent copy-number variations in genotype data from 751 multiplex families with autism. Specific recurrent de novo events were further evaluated in clinical-testing data from Childrens Hospital Boston and in a large population study in Iceland. RESULTS Among the AGRE families, we observed five instances of a de novo deletion of 593 kb on chromosome 16p11.2. Using comparative genomic hybridization, we observed the identical deletion in 5 of 512 children referred to Childrens Hospital Boston for developmental delay, mental retardation, or suspected autism spectrum disorder, as well as in 3 of 299 persons with autism in an Icelandic population; the deletion was also carried by 2 of 18,834 unscreened Icelandic control subjects. The reciprocal duplication of this region occurred in 7 affected persons in AGRE families and 4 of the 512 children from Childrens Hospital Boston. The duplication also appeared to be a high-penetrance risk factor. CONCLUSIONS We have identified a novel, recurrent microdeletion and a reciprocal microduplication that carry substantial susceptibility to autism and appear to account for approximately 1% of cases. We did not identify other regions with similar aggregations of large de novo mutations.


Cell | 1993

A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor

James A. Trofatter; Mia MacCollin; Joni L. Rutter; Jill R. Murrell; Mabel P. Duyao; Dilys M. Parry; Roswell Eldridge; Nikolai Kley; Anil G. Menon; Karen Pulaski; Volker H. Haase; Christine Ambrose; David J. Munroe; Catherine Bove; Jonathan L. Haines; Robert L. Martuza; Marcy E. MacDonald; Bernd R. Seizinger; M. Priscilla Short; Alan J. Buckler; James F. Gusella

Neurofibromatosis 2 (NF2) is a dominantly inherited disorder characterized by the occurrence of bilateral vestibular schwannomas and other central nervous system tumors including multiple meningiomas. Genetic linkage studies and investigations of both sporadic and familial tumors suggest that NF2 is caused by inactivation of a tumor suppressor gene in chromosome 22q12. We have identified a candidate gene for the NF2 tumor suppressor that has suffered nonoverlapping deletions in DNA from two independent NF2 families and alterations in meningiomas from two unrelated NF2 patients. The candidate gene encodes a 587 amino acid protein with striking similarity to several members of a family of proteins proposed to link cytoskeletal components with proteins in the cell membrane. The NF2 gene may therefore constitute a novel class of tumor suppressor gene.


Nature Genetics | 1997

The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein

Laurie J. Ozelius; Jeffrey W. Hewett; Curtis E. Page; Susan B. Bressman; Patricia L. Kramer; Christo Shalish; Deborah de Leon; Mitchell F. Brin; Deborah Raymond; David P. Corey; Stanley Fahn; Neil Risch; Alan J. Buckler; James F. Gusella; Xandra O. Breakefield

Early-onset torsion dystonia is a movement disorder, characterized by twisting muscle contractures, that begins in childhood. Symptoms are believed to result from altered neuronal communication in the basal ganglia. This study identifies the DYT1 gene on human chromosome 9q34 as being responsible for this dominant disease. Almost all cases of early-onset dystonia have a unique 3-bp deletion that appears to have arisen independently in different ethnic populations. This deletion results in loss of one of a pair of glutamic-acid residues in a conserved region of a novel ATP-binding protein, termed torsinA. This protein has homologues in nematode, rat, mouse and humans, with some resemblance to the family of heat-shock proteins and Clp proteases.


Cell | 1995

ISOLATION OF A NOVEL GENE UNDERLYING BATTEN-DISEASE, CLN3

Terry J. Lerner; Rose-Mary Boustany; John W. Anderson; Kenneth L. D'Arigo; Karen Schlumpf; Alan J. Buckler; James F. Gusella; Jonathan L. Haines

Batten disease (also known as juvenile neuronal ceroid lipofuscinosis) is a recessively inherited neurodegenerative disorder of childhood characterized by progressive loss of vision, seizures, and psychomotor disturbances. The Batten disease gene, CLN3, maps to chromosome 16p12.1. The so-called 56 chromosome haplotype defined by alleles at the D16S299 and D16S298 loci is shared by 73% of Batten disease chromosomes. Exon amplification of a cosmid containing D16S298 has yielded a candidate gene that is disrupted by a 1 kb genomic deletion in all patients carrying the 56 chromosome. Two separate deletions and a point mutation altering a splice site in three unrelated families have confirmed the candidate as the CLN3 gene. The disease gene encodes a novel 438 amino acid protein of unknown function.


The New England Journal of Medicine | 1986

Huntington's disease. Pathogenesis and management.

Joseph B. Martin; James F. Gusella

Manifestations neurologiques et psychiatriques. Age de debut. Neuropathologie. Les neurotransmetteurs dans la choree de Huntington. Explorations genetiques moleculaires. Elements de pronostic


Nature Genetics | 1997

Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion

Jacqueline K. White; Wojtek Auerbach; Mabel P. Duyao; Jean Paul Vonsattel; James F. Gusella; Alexandra L. Joyner; Marcy E. MacDonald

Huntingtons disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a CAG repeat expansion that lengthens a glutamine segment in the novel huntingtin protein. To elucidate the molecular basis of HD, we extended the polyglutamine tract of the mouse homologue, Hdh, by targetted introduction of an expanded human HD CAG repeat, creating mutant HdhneoQ50 and HdhQ50 alleles that express reduced and wild-type levels of altered huntingtin, respectively. Mice homozygous for reduced levels displayed characteristic aberrant brain development and perinatal lethality, indicating a critical function for Hdh in neurogenesis. However, mice with normal levels of mutant huntingtin did not display these abnormalities, indicating that the expanded CAG repeat does not eliminate or detectably impair huntingtins neurogenic function. Thus, the HD defect in man does not mimic complete or partial Hdh inactivation and appears to cause neurodegenerative disease by a gain-of-function mechanism.


Nature Reviews Neuroscience | 2000

Molecular genetics: Unmasking polyglutamine triggers in neurodegenerative disease

James F. Gusella; Marcy E. MacDonald

Two decades ago, molecular genetic analysis provided a new approach for defining the roots of inherited disorders. This strategy has proved particularly powerful because, with only a description of the inheritance pattern, it can uncover previously unsuspected mechanisms of pathogenesis that are not implicated by known biological pathways or by the disease manifestations. Nowhere has the impact of molecular genetics been more evident than in the dominantly inherited neurodegenerative disorders, where eight unrelated diseases have been revealed to possess the same type of mutation — an expanded polyglutamine encoding sequence — affecting different genes.


The New England Journal of Medicine | 1991

Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity

Teepu Siddique; Denise A. Figlewicz; Margaret A. Pericak-Vance; Jonathan L. Haines; Guy A. Rouleau; Anita J. Jeffers; Peter Sapp; Wu Yen Hung; J. L. Bebout; Diane McKenna-Yasek; Gang Deng; H. Robert Horvitz; James F. Gusella; Robert H. Brown; Allen D. Roses; Raymond P. Roos; David B. Williams; Donald W. Mulder; Paul C. Watkins; FaizurRahman Noore; Garth A. Nicholson; Rosalyn Reed; Benjamin Rix Brooks; Barry W. Festoff; Jack P. Antel; Rup Tandan; Theodore L. Munsat; Nigel G. Laing; John J. Halperin; Forbes H. Norris

BACKGROUND Amyotrophic lateral sclerosis is a progressive neurologic disorder that commonly results in paralysis and death. Despite more than a century of research, no cause of, cure for, or means of preventing this disorder has been found. In a minority of cases, it is familial and inherited as an autosomal dominant trait with age-dependent penetrance. In contrast to the sporadic form of amyotrophic lateral sclerosis, the familial form provides the opportunity to use molecular genetic techniques to localize an inherited defect. Furthermore, such studies have the potential to discover the basic molecular defect causing motor-neuron degeneration. METHODS AND RESULTS We evaluated 23 families with familial amyotrophic lateral sclerosis for linkage of the gene causing this disease to four DNA markers on the long arm of chromosome 21. Multipoint linkage analyses demonstrated linkage between the gene and these markers. The maximum lod score--5.03--was obtained 10 centimorgans distal (telomeric) to the DNA marker D21S58. There was a significant probability (P less than 0.0001) of genetic-locus heterogeneity in the families. CONCLUSIONS The localization of a gene causing familial amyotrophic lateral sclerosis provides a means of isolating this gene and studying its function. Insight gained from understanding the function of this gene may be applicable to the design of rational therapy for both the familial and sporadic forms of the disease.


Cell | 1987

Genetic linkage of von Recklinghausen neurofibromatosis to the nerve growth factor receptor gene

B.R. Seizinger; Guy A. Rouleau; Laurie J. Ozelius; A.H. Lane; Ann G. Faryniarz; Moses V. Chao; S Huson; Bruce R. Korf; Dilys M. Parry; Margaret A. Pericak-Vance; Francis S. Collins; Wendy Hobbs; B.G. Falcone; J.A. Iannazzi; J.C. Roy; P. St George-Hyslop; Rudolph E. Tanzi; Mark Bothwell; Meena Upadhyaya; Peter S. Harper; A.E. Goldstein; D.L. Hoover; J.L. Bader; M.A. Spence; J.J. Mulvihill; A.S. Aylsworth; J. M. Vance; G.O.D. Rossenwasser; Perry C. Gaskell; A. D. Roses

von Recklinghausen neurofibromatosis (VRNF) is one of the most common inherited disorders affecting the human nervous system. VRNF is transmitted as an autosomal dominant defect with high penetrance but variable expressivity. The disorder is characterized clinically by hyperpigmented patches of skin (café au lait macules, axillary freckles) and by multiple tumors of peripheral nerve, spinal nerve roots, and brain (neurofibromas, optic gliomas). These tumors can cause disfigurement, paralysis, blindness, and death. We have determined the chromosomal location of the VRNF gene by genetic linkage analysis using DNA markers. The VRNF gene is genetically linked to the locus encoding nerve growth factor receptor, located on the long arm of chromosome 17 in the region 17q12----17q22. However, crossovers with the VRNF locus suggest that a mutation in the nerve growth factor receptor gene itself is unlikely to be the fundamental defect responsible for the VRNF phenotype.

Collaboration


Dive into the James F. Gusella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan L. Haines

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yiping Shen

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge