Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James F. Hunter is active.

Publication


Featured researches published by James F. Hunter.


Review of Scientific Instruments | 2013

Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets.

C. L. Morris; Mark A. Bourke; Darrin D. Byler; Ching-Fong Chen; Gary E. Hogan; James F. Hunter; K. Kwiatkowski; F. G. Mariam; Kenneth J. McClellan; F. E. Merrill; Deborah Jean Morley; A. Saunders

We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.


Physics of Plasmas | 2017

Laser-plasmas in the relativistic-transparency regime: Science and applications

Juan C. Fernandez; D. Cort Gautier; Chengkung Huang; S. Palaniyappan; B. J. Albright; W. Bang; G. Dyer; Andrea Favalli; James F. Hunter; Jacob Mendez; Markus Roth; Martyn T. Swinhoe; P. A. Bradley; O. Deppert; Michelle A. Espy; Katerina Falk; N. Guler; Christopher E. Hamilton; B. M. Hegelich; Daniela Henzlova; Kiril Dimitrov Ianakiev; Metodi Iliev; R. P. Johnson; A. Kleinschmidt; Adrian S. Losko; E. McCary; M. Mocko; R. O. Nelson; R. Roycroft; Miguel A. Santiago Cordoba

Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at “table-top” scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (∼104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (∼0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2–8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ∼2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. The plans and prospects for further improvements and applications are also discussed.


Materials Science Forum | 2014

Demonstration of near Field High Energy X-Ray Diffraction Microscopy on High-Z Ceramic Nuclear Fuel Material

Donald W. Brown; Levente Balogh; Darrin D. Byler; Chris M. Hefferan; James F. Hunter; Peter Kenesei; S. F. Li; John Lind; Stephen R. Niezgoda; Robert M. Suter

Near-field high energy x-ray diffraction microscopy (nf-HEDM) and high energy x-ray micro-tomography (μT) have been utilized to characterize the pore structure and grain morphology in sintered ceramic UO2 nuclear fuel material. μT successfully images pores to 2-3μm diameters and is analyzed to produce a pore size distribution. It is apparent that the largest number of pores and pore volume in the sintered ceramic are below the current resolution of the technique, which might be more appropriate to image cracks in the same ceramics. Grain orientation maps of slices determined by nf-HEDM at 25 μm intervals are presented and analyzed in terms of grain boundary misorientation angle. The benefit of these two techniques is that they are non-destructive and thus could be performed before and after processes (such as time at temperature or in-reactor) or even in-situ.


Frontiers in Plant Science | 2016

In vivo Observation of Tree Drought Response with Low-Field NMR and Neutron Imaging

Michael W. Malone; Jacob Yoder; James F. Hunter; Michelle A. Espy; Lee T. Dickman; Ron Nelson; Sven C. Vogel; Henrik Sandin; Sanna Sevanto

Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature in the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. These results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.


Proceedings of SPIE | 2016

A wide-acceptance Compton spectrometer for spectral characterization of a medical x-ray source

Michelle A. Espy; Amanda Gehring; A. Belian; James F. Hunter; M. James; M. Klasky; Jacob Mendez; D.C. Moir; Robert Sedillo; Roger P. Shurter; J. Stearns; K. Van Syoc; Petr L. Volegov

Accurate knowledge of the x-ray spectra used in medical treatment and radiography is important for dose calculations and material decomposition analysis. Indirect measurements via transmission through materials are possible. However, such spectra are challenging to measure directly due to the high photon fluxes. One method of direct measurement is via a Compton spectrometer (CS) method. In this approach, the x-rays are converted to a much lower flux of electrons via Compton scattering on a converter foil (typically beryllium or aluminum). The electrons are then momentum selected by bending in a magnetic field. With tight angular acceptance of electrons into the magnet of ~ 1 deg, there is a linear correlation between incident photon energy and electron position recorded on an image plate. Here we present measurements of Bremsstrahlung spectrum from a medical therapy machine, a Scanditronix M22 Microtron. Spectra with energy endpoints from 6 to 20 MeV are directly measured, using a CS with a wide energy range from 0.5 to 20 MeV. We discuss the sensitivity of the device and the effects of converter material and collimation on the accuracy of the reconstructed spectra. Approaches toward improving the sensitivity, including the use of coded apertures, and potential future applications to characterization of spectra are also discussed.


Proceedings of SPIE | 2015

Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

Alicia L. Swift; Richard C. Schirato; Edward A. McKigney; James F. Hunter; Brian Allen Temple

The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.


Journal of Imaging | 2018

Neutron Imaging at LANSCE—From Cold to Ultrafast

R. O. Nelson; Sven C. Vogel; James F. Hunter; Erik B. Watkins; Adrian S. Losko; Anton S. Tremsin; Nicholas Paul Borges; Theresa Elizabeth Cutler; Lee T. Dickman; Michelle A. Espy; D. C. Gautier; Amanda Christine Madden; Jaroslaw Majewski; Michael W. Malone; Douglas R. Mayo; Kenneth J. McClellan; David R. Montgomery; S. Mosby; Andrew T. Nelson; Kyle J. Ramos; Richard C. Schirato; Katlin Schroeder; Sanna Sevanto; Alicia L. Swift; Long K. Vo; Tom Williamson; Nicola M. Winch

In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE), covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center), Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutrons and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR) facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns), time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.


IEEE Transactions on Automation Science and Engineering | 2018

Automating High-Precision X-Ray and Neutron Imaging Applications With Robotics

Joseph Hashem; Mitch Pryor; S. Landsberger; James F. Hunter; David R. Janecky

Los Alamos National Laboratory and the University of Texas at Austin recently implemented a robotically controlled nondestructive testing (NDT) system for X-ray and neutron imaging. This system is intended to address the need for accurate measurements for a variety of parts and, be able to track measurement geometry at every imaging location, and is designed for high-throughput applications. This system was deployed in a beam port at a nuclear research reactor and in an operational inspection X-ray bay. The nuclear research reactor system consisted of a precision industrial seven-axis robot, 1.1-MW TRIGA research reactor, and a scintillator-mirror-camera-based imaging system. The X-ray bay system incorporated the same robot, a 225-keV microfocus X-ray source, and a custom flat panel digital detector. The robotic positioning arm is programmable and allows imaging in multiple configurations, including planar, cylindrical, as well as other user defined geometries that provide enhanced engineering evaluation capability. The imaging acquisition device is coupled with the robot for automated image acquisition. The robot can achieve target positional repeatability within 17


IEEE Transactions on Nuclear Science | 2017

Development and Characterization of a High-Energy Neutron Time-of-Flight Imaging System

Amanda Christine Madden; Richard C. Schirato; Alicia L. Swift; Theresa Elizabeth Cutler; Douglas R. Mayo; James F. Hunter

\mu \text{m}


Review of Scientific Instruments | 2016

Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

R. Simpson; T. E. Cutler; C. R. Danly; Michelle A. Espy; J. H. Goglio; James F. Hunter; A. C. Madden; D. R. Mayo; F. E. Merrill; R. O. Nelson; A. L. Swift; C. H. Wilde; T. G. Zocco

in the 3-D space. Flexible automation with nondestructive imaging saves costs, reduces dosage, adds imaging techniques, and achieves better quality results in less time. Specifics regarding the robotic system and imaging acquisition and evaluation processes are presented. This paper reviews the comprehensive testing and system evaluation to affirm the feasibility of robotic NDT, presents the system configuration, and reviews results for both X-ray and neutron radiography imaging applications.Note to Practitioners—While looking for ways to improve throughput and increase efficiency in nondestructive imaging applications, the NonDestructive Testing and Evaluation Group at the Los Alamos National Laboratory decided to take a look at automation opportunities. Digital radiography and computed tomography are time-consuming processes, making them ideal candidates for robotic solutions. Radiography applications often require several images to be acquired from different angles and a lot of time they have to be very precise so that the feature of interest is identifiable and the resulting image meets the client’s requirements. With the robot acting as the motion control system, the imaged part can be placed directly in the beam path and oriented in six degrees of freedom. The robot can achieve significantly higher levels of precision than a human and has the ability to adjust the part while the source is active. The system also reduces levels of radiation our staff is exposed to, as the robot is setup to handle radioactive and hazardous parts. Not only does the robot move parts more precisely and with higher resolution than humans, but it also adds additional flexibility in the type and nature of images that the lab can produce. Future work will involve using this system for advanced automated scans such as achieving evenly spaced views around a sphere autonomously, since this system has not yet been used for more advanced scans beyond helical scanning. A tightly linked feedback loop between the robot and imaging code in which the imaging code would autonomously communicate to the robot what additional views are needed to reduce imaging error can also be explored.

Collaboration


Dive into the James F. Hunter's collaboration.

Top Co-Authors

Avatar

Michelle A. Espy

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian S. Losko

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alicia L. Swift

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. O. Nelson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard C. Schirato

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sven C. Vogel

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. L. Morris

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Donald W. Brown

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge