Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James F. Lyon is active.

Publication


Featured researches published by James F. Lyon.


Physics of Fluids | 1985

Monte Carlo studies of transport in stellarators

R. H. Fowler; J.A. Rome; James F. Lyon

Transport is studied in toroidal geometry by integrating the guiding‐center equations in magnetic coordinates and simulating collisions with a Monte Carlo collision operator. The effects of the ambipolar electric field on diffusion losses are determined for model magnetic fields and the correct magnetic field of the Advanced Toroidal Facility (ATF‐1) stellarator. Comparisons are made of the computed diffusion coefficients and the theoretically predicted values.


Nuclear Fusion | 2001

Physics issues of compact drift optimized stellarators

Donald A. Spong; S.P. Hirshman; Lee A. Berry; James F. Lyon; R.H. Fowler; Dennis J Strickler; M. Cole; B.N. Nelson; D. Williamson; Andrew Simon Ware; D. Alban; Raul Sanchez; G. Y. Fu; Donald Monticello; W. H. Miner; Prashant M. Valanju

Physics issues are discussed for compact stellarator configurations which achieve good confinement by the fact that the magnetic field modulus |B| in magnetic co-ordinates is dominated by poloidally symmetric components. Two distinct configuration types are considered: (1) those which achieve their drift optimization and rotational transform at low β and low bootstrap current by appropriate plasma shaping; and (2) those which have a greater reliance on plasma β and bootstrap currents for supplying the transform and obtaining quasi-poloidal symmetry. Stability analysis of the latter group of devices against ballooning, kink and vertical displacement modes has indicated that stable β values on the order of 15% are possible. The first class of devices is being considered for a low β near term experiment that could explore some of the confinement features of the high β configurations.


Nuclear Fusion | 1988

Progress in stellarator/heliotron research: 1981?1986

B. A. Carreras; G. Grieger; J. H. Harris; J.L. Johnson; James F. Lyon; O. Motojima; F. Rau; H. Renner; J.A. Rome; K. Uo; Masahiro Wakatani; H. Wobig

Substantial progress was made during the period 1981-1986 in plasma parameters, physics understanding, and improvement of the stellarator/heliotron concept. Recent advances include (1) substantial achievements in higher plasma parameters and currentless plasma operation, (2) new theoretical results with respect to higher beta limits, second stability region, effect of a helical axis, effect of electric fields on transport, and reduction of secondary currents; and (3) improvements to the reactor concept. The key issues have been further refined, and the short-term direction of the program is clear; a number of new facilities that were designed to resolve these issues are about to come into operation or are in the final design stages. This report summarizes these advances.


Fusion Science and Technology | 2008

THE ARIES-CS COMPACT STELLARATOR FUSION POWER PLANT

F. Najmabadi; A.R. Raffray; S. I. Abdel-Khalik; Leslie Bromberg; L. Crosatti; L. El-Guebaly; P. R. Garabedian; A. Grossman; D. Henderson; A. Ibrahim; T. Ihli; T. B. Kaiser; B. Kiedrowski; L. P. Ku; James F. Lyon; R. Maingi; S. Malang; Carl J. Martin; T.K. Mau; Brad J. Merrill; Richard L. Moore; R. J. Peipert; David A. Petti; D. L. Sadowski; M.E. Sawan; J.H. Schultz; R. N. Slaybaugh; K. T. Slattery; G. Sviatoslavsky; Alan D. Turnbull

Abstract An integrated study of compact stellarator power plants, ARIES-CS, has been conducted to explore attractive compact stellarator configurations and to define key research and development (R&D) areas. The large size and mass predicted by earlier stellarator power plant studies had led to cost projections much higher than those of the advanced tokamak power plant. As such, the first major goal of the ARIES-CS research was to investigate if stellarator power plants can be made to be comparable in size to advanced tokamak variants while maintaining desirable stellarator properties. As stellarator fusion core components would have complex shapes and geometry, the second major goal of the ARIES-CS study was to understand and quantify, as much as possible, the impact of the complex shape and geometry of fusion core components. This paper focuses on the directions we pursued to optimize the compact stellarator as a fusion power plant, summarizes the major findings from the study, highlights the key design aspects and constraints associated with a compact stellarator, and identifies the major issues to help guide future R&D.


Physics of Plasmas | 2000

Physics issues in the design of high-beta, low-aspect-ratio stellarator experiments

G.H. Neilson; A. Reiman; M. C. Zarnstorff; A. Brooks; G. Y. Fu; R.J. Goldston; L. P. Ku; Zhihong Lin; R. Majeski; Donald Monticello; H. Mynick; N. Pomphrey; M. H. Redi; W. Reiersen; J. Schmidt; S.P. Hirshman; James F. Lyon; Lee A. Berry; B. E. Nelson; Raul Sanchez; Donald A. Spong; Allen H. Boozer; W. H. Miner; Prashant M. Valanju; W.A. Cooper; M. Drevlak; P. Merkel; C. Nuehrenberg

High-beta, low-aspect-ratio ~‘‘compact’’ ! stellarators are promising solutions to the problem of developing a magnetic plasma configuration for magnetic fusion power plants that can be sustained in steady state without disrupting. These concepts combine features of stellarators and advanced tokamaks and have aspect ratios similar to those of tokamaks ~2‐4!. They are based on computed plasma configurations that are shaped in three dimensions to provide desired stability and transport properties. Experiments are planned as part of a program to develop this concept. A b54% quasi-axisymmetric plasma configuration has been evaluated for the National Compact Stellarator Experiment ~NCSX!. It has a substantial bootstrap current and is shaped to stabilize ballooning, external kink, vertical, and neoclassical tearing modes without feedback or close-fitting conductors. Quasi-omnigeneous plasma configurations stable to ballooning modes at b54% have been evaluated for the Quasi-Omnigeneous Stellarator ~QOS! experiment. These equilibria have relatively low bootstrap currents and are insensitive to changes in beta. Coil configurations have been calculated that reconstruct these plasma configurations, preserving their important physics properties. Theory- and experiment-based confinement analyses are used to evaluate the technical capabilities needed to reach target plasma conditions. The physics basis for these complementary experiments is described.


Fusion Science and Technology | 2008

DESIGNING ARIES-CS COMPACT RADIAL BUILD AND NUCLEAR SYSTEM : NEUTRONICS, SHIELDING, AND ACTIVATION

L. El-Guebaly; Paul P. H. Wilson; D. Henderson; M.E. Sawan; G. Sviatoslavsky; T. Tautges; R. N. Slaybaugh; B. Kiedrowski; A. Ibrahim; Carl J. Martin; R. Raffray; S. Malang; James F. Lyon; L. P. Ku; X. R. Wang; Leslie Bromberg; Brad J. Merrill; Lester M. Waganer; F. Najmabadi

Abstract Within the ARIES-CS project, design activities have focused on developing the first compact device that enhances the attractiveness of the stellarator as a power plant. The objectives of this paper are to review the nuclear elements that received considerable attention during the design process and provide a perspective on their successful integration into the final design. Among these elements are the radial build definition, the well-optimized in-vessel components that satisfy the ARIES top-level requirements, the carefully selected nuclear and engineering parameters to produce an economic optimum, the modeling - for the first time ever - of the highly complex stellarator geometry for the three-dimensional nuclear assessment, and the overarching safety and environmental constraints to deliver an attractive, reliable, and truly compact stellarator power plant.


Plasma Physics and Controlled Fusion | 1999

Physics Design of a High-beta Quasi-axisymmetric Stellarator

A. Reiman; G. Y. Fu; S.P. Hirshman; L. P. Ku; Donald Monticello; H. Mynick; M. H. Redi; Donald A. Spong; M. C. Zarnstorff; B. D. Blackwell; Allen H. Boozer; A. Brooks; W.A. Cooper; M Drevlak; R.J. Goldston; J. H. Harris; M. Isaev; Charles Kessel; Zhihong Lin; James F. Lyon; P. Merkel; M. Mikhailov; W. H. Miner; G.H. Neilson; M. Okamoto; N. Pomphrey; W. Reiersen; Raul Sanchez; J. Schmidt; A.A. Subbotin

Note: 8th Toki 11th International Stellarator Conference, Toki-City, Japan, September/October 1997, Proc. published in J. Plasma and Fusion Res., SERIES, Vol. 1, 429 - 432 (1998) Reference CRPP-CONF-1998-055 Record created on 2008-05-13, modified on 2016-08-08


Physics of Plasmas | 1999

Physics of compact stellarators

S.P. Hirshman; Donald A. Spong; J.C. Whitson; B. E. Nelson; D. B. Batchelor; James F. Lyon; Raul Sanchez; A. Brooks; G. Y. Fu; R.J. Goldston; L. P. Ku; D.A. Monticello; H. Mynick; G.H. Neilson; N. Pomphrey; M. H. Redi; W. Reiersen; A. Reiman; J. Schmidt; R. B. White; M. C. Zarnstorff; W. H. Miner; Prashant M. Valanju; Allen H. Boozer

Recent progress in the theoretical understanding and design of compact stellarators is described. Hybrid devices, which depart from canonical stellarators by deriving benefits from the bootstrap current which flows at finite beta, comprise a class of low aspect ratio A<4 stellarators. They possess external kink stability (at moderate beta) in the absence of a conducting wall, possible immunity to disruptions through external control of the transform and magnetic shear, and they achieve volume-averaged ballooning beta limits (4%–6%) similar to those in tokamaks. In addition, bootstrap currents can reduce the effects of magnetic islands (self-healing effect) and lead to simpler stellarator coils by reducing the required external transform. Powerful physics and coil optimization codes have been developed and integrated to design experiments aimed at exploring compact stellarators. The physics basis for designing the national compact stellarator will be discussed.


symposium on fusion technology | 2003

Design of the national compact stellarator experiment (NCSX)

B. Nelson; Lee A. Berry; A. Brooks; M. Cole; J.C. Chrzanowski; H.-M. Fan; P.J. Fogarty; P. Goranson; P. Heitzenroeder; S.P. Hirshman; G.H. Jones; James F. Lyon; G.H. Neilson; W. Reiersen; Dennis J Strickler; D. Williamson

Abstract The National Compact Stellarator Experiment (NCSX) [ http://www.pppl.gov/ncsx/Meetings/CDR/CDRFinal/EngineeringOverview_R2.pdf ] is being designed as a proof of principal test of a quasi-axisymmetric compact stellarator. This concept combines the high beta and good confinement features of an advanced tokamak with the low current, disruption-free characteristics of a stellarator. NCSX has a three-field-period plasma configuration with an average major radius of 1.4 m, an average minor radius of 0.33 m and a toroidal magnetic field on axis of up to 2 T. The stellarator core is a complex assembly of four coil systems that surround the highly shaped plasma and vacuum vessel. Heating is provided by up to four, 1.5 MW neutral beam injectors and provision is made to add 6 MW of ICRH. The experiment will be built at the Princeton Plasma Physics Laboratory, with first plasma expected in 2007.


Review of Scientific Instruments | 2003

Spatially Resolved Measurements of Energetic Neutral Particle Distributions in the Large Helical Device

James F. Lyon; P. Goncharov; S. Murakami; T. Ozaki; D. E. Greenwood; D. A. Spong; S. Sudo; Lhd Groups I

A silicon-detector-based neutral particle analyzer array was used to study fast ion distributions in the Large Helical Device for different plasma heating conditions. GNET code simulations of the measurements are needed for accurate interpretation of the data.

Collaboration


Dive into the James F. Lyon's collaboration.

Top Co-Authors

Avatar

S.P. Hirshman

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Donald A. Spong

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lee A. Berry

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

G.H. Neilson

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dennis J Strickler

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. C. Zarnstorff

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. Nelson

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. H. Harris

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. Cole

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge