Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James G. Bollinger is active.

Publication


Featured researches published by James G. Bollinger.


Nature Medicine | 2008

Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development

Robert L. Wilensky; Yi Shi; Emile R. Mohler; Damir Hamamdzic; Mark Burgert; Jun Li; Anthony D. Postle; Robert S. Fenning; James G. Bollinger; Bryan E. Hoffman; Daniel J Pelchovitz; Jisheng Yang; Rosanna C. Mirabile; Christine L. Webb; LeFeng Zhang; Ping Zhang; Michael H. Gelb; M Walker; Andrew Zalewski; Colin H. Macphee

Increased lipoprotein-associated phospholipase A2 (Lp-PLA2) activity is associated with increased risk of cardiac events, but it is not known whether Lp-PLA2 is a causative agent. Here we show that selective inhibition of Lp-PLA2 with darapladib reduced development of advanced coronary atherosclerosis in diabetic and hypercholesterolemic swine. Darapladib markedly inhibited plasma and lesion Lp-PLA2 activity and reduced lesion lysophosphatidylcholine content. Analysis of coronary gene expression showed that darapladib exerted a general anti-inflammatory action, substantially reducing the expression of 24 genes associated with macrophage and T lymphocyte functioning. Darapladib treatment resulted in a considerable decrease in plaque area and, notably, a markedly reduced necrotic core area and reduced medial destruction, resulting in fewer lesions with an unstable phenotype. These data show that selective inhibition of Lp-PLA2 inhibits progression to advanced coronary atherosclerotic lesions and confirms a crucial role of vascular inflammation independent from hypercholesterolemia in the development of lesions implicated in the pathogenesis of myocardial infarction and stroke.


Journal of Biological Chemistry | 2002

Interfacial Kinetic and Binding Properties of the Complete Set of Human and Mouse Groups I, II, V, X, and XII Secreted Phospholipases A2

Alan G. Singer; Farideh Ghomashchi; Catherine Le Calvez; James G. Bollinger; Sofiane Bezzine; Morgane Rouault; Martin Sadilek; Eric D. Nguyen; Michel Lazdunski; Gérard Lambeau; Michael H. Gelb

Expression of the full set of human and mouse groups I, II, V, X, and XII secreted phospholipases A2 (sPLA2s) in Escherichia coli and insect cells has provided pure recombinant enzymes for detailed comparative interfacial kinetic and binding studies. The set of mammalian sPLA2s display dramatically different sensitivity to dithiothreitol. The specific activity for the hydrolysis of vesicles of differing phospholipid composition by these enzymes varies by up to 4 orders of magnitude, and yet all enzymes display similar catalytic site specificity toward phospholipids with different polar head groups. Discrimination between sn-2 polyunsaturated versus saturated fatty acyl chains is <6-fold. These enzymes display apparent dissociation constants for activation by calcium in the 1–225 μm range, depending on the phospholipid substrate. Analysis of the inhibition by a set of 12 active site-directed, competitive inhibitors reveals a large variation in the potency among the mammalian sPLA2s, with Me-Indoxam being the most generally potent sPLA2 inhibitor. A dramatic correlation exists between the ability of the sPLA2s to hydrolyze phosphatidylcholine-rich vesicles efficiently in vitro and the ability to release arachidonic acid when added exogenously to mammalian cells; the group V and X sPLA2s are uniquely efficient in this regard.


Journal of Experimental Medicine | 2007

Importance of group X–secreted phospholipase A2 in allergen-induced airway inflammation and remodeling in a mouse asthma model

William R. Henderson; Emil Y. Chi; James G. Bollinger; Ying Tzang Tien; Xin Ye; Luca Castelli; Yuri P. Rubtsov; Alan G. Singer; Gertrude K S Chiang; Timo J. Nevalainen; Alexander Y. Rudensky; Michael H. Gelb

Arachidonic acid metabolites, the eicosanoids, are key mediators of allergen-induced airway inflammation and remodeling in asthma. The availability of free arachidonate in cells for subsequent eicosanoid biosynthesis is controlled by phospholipase A2s (PLA2s), most notably cytosolic PLA2-α. 10 secreted PLA2s (sPLA2s) have also been identified, but their function in eicosanoid generation is poorly understood. We investigated the role of group X sPLA2 (sPLA2-X), the sPLA2 with the highest in vitro cellular phospholipolysis activity, in acute and chronic mouse asthma models in vivo. The lungs of sPLA2-X−/− mice, compared with those of sPLA2-X+/+ littermates, had significant reduction in ovalbumin-induced infiltration by CD4+ and CD8+ T cells and eosinophils, goblet cell metaplasia, smooth muscle cell layer thickening, subepithelial fibrosis, and levels of T helper type 2 cell cytokines and eicosanoids. These data direct attention to sPLA2-X as a novel therapeutic target for asthma.


Blood | 2014

Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation

Luc H. Boudreau; Anne Claire Duchez; Nathalie Cloutier; Denis Soulet; Nicolas Martin; James G. Bollinger; Alexandre Paré; Matthieu Rousseau; Gajendra S. Naika; Tania Lévesque; Cynthia Laflamme; Geneviève Marcoux; Gérard Lambeau; Richard W. Farndale; Marc Pouliot; Hind Hamzeh-Cognasse; Fabrice Cognasse; Olivier Garraud; Peter Nigrovic; Helga Guderley; Steve Lacroix; Louis Thibault; John W. Semple; Michael H. Gelb; Eric Boilard

Mitochondrial DNA (mtDNA) is a highly potent inflammatory trigger and is reportedly found outside the cells in blood in various pathologies. Platelets are abundant in blood where they promote hemostasis. Although lacking a nucleus, platelets contain functional mitochondria. On activation, platelets produce extracellular vesicles known as microparticles. We hypothesized that activated platelets could also release their mitochondria. We show that activated platelets release respiratory-competent mitochondria, both within membrane-encapsulated microparticles and as free organelles. Extracellular mitochondria are found in platelet concentrates used for transfusion and are present at higher levels in those that induced acute reactions (febrile nonhemolytic reactions, skin manifestations, and cardiovascular events) in transfused patients. We establish that the mitochondrion is an endogenous substrate of secreted phospholipase A2 IIA (sPLA2-IIA), a phospholipase otherwise specific for bacteria, likely reflecting the ancestral proteobacteria origin of mitochondria. The hydrolysis of the mitochondrial membrane by sPLA2-IIA yields inflammatory mediators (ie, lysophospholipids, fatty acids, and mtDNA) that promote leukocyte activation. Two-photon microscopy in live transfused animals revealed that extracellular mitochondria interact with neutrophils in vivo, triggering neutrophil adhesion to the endothelial wall. Our findings identify extracellular mitochondria, produced by platelets, at the midpoint of a potent mechanism leading to inflammatory responses.


Journal of Immunology | 2005

Activation of Cytokine Production by Secreted Phospholipase A2 in Human Lung Macrophages Expressing the M-Type Receptor

Francescopaolo Granata; Angelica Petraroli; Eric Boilard; Sofiane Bezzine; James G. Bollinger; Luigi Del Vecchio; Michael H. Gelb; Gérard Lambeau; Gianni Marone; Massimo Triggiani

Secreted phospholipases A2 (sPLA2) are enzymes released in plasma and extracellular fluids during inflammatory diseases. Because human group IB and X sPLA2s are expressed in the lung, we examined their effects on primary human lung macrophages (HLM). Both sPLA2s induced TNF-α and IL-6 release in a concentration-dependent manner by increasing their mRNA expression. This effect was independent of their enzymatic activity because 1) the capacity of sPLA2s to mobilize arachidonic acid from HLM was unrelated to their ability to induce cytokine production; and 2) two catalytically inactive isoforms of group IB sPLA2 (bromophenacyl bromide-inactivated human sPLA2 and the H48Q mutant of the porcine sPLA2) were as effective as the catalytically active sPLA2s in inducing cytokine production. HLM expressed the M-type receptor for sPLA2s at both mRNA and protein levels, as determined by RT-PCR, immunoblotting, immunoprecipitation, and flow cytometry. Me-indoxam, which decreases sPLA2 activity as well as binding to the M-type receptor, suppressed sPLA2-induced cytokine production. Incubation of HLM with the sPLA2s was associated with phosphorylation of ERK1/2, and a specific inhibitor of this pathway, PD98059, significantly reduced the production of IL-6 elicited by sPLA2s. In conclusion, two distinct sPLA2s produced in the human lung stimulate cytokine production by HLM via a mechanism that is independent of their enzymatic activity and involves activation of the ERK1/2 pathway. HLM express the M-type receptor, but its involvement in eliciting cytokine production deserves further investigation.


Journal of Biological Chemistry | 2002

On the Binding Preference of Human Groups IIA and X Phospholipases A2 for Membranes with Anionic Phospholipids

Sofiane Bezzine; James G. Bollinger; Alan G. Singer; Sarah L. Veatch; Sarah L. Keller; Michael H. Gelb

Mammals contain 9–10 secreted phospholipases A2 (sPLA2s) that display widely different affinities for membranes, depending on the phospholipid composition. The much higher enzymatic activity of human group X sPLA2(hGX) compared with human group IIA sPLA2 (hGIIA) on phosphatidylcholine (PC)-rich vesicles is due in large part to the higher affinity of the former enzyme for such vesicles; this result also holds when vesicles contain cholesterol and sphingomyelin. The inclusion of anionic phosphatidylserine in PC vesicles dramatically enhances interfacial binding and catalysis of hGIIA but not of hGX. This is the result of the large number of lysine and arginine residues scattered over the entire surface of hGIIA, which cause the enzyme to form a supramolecular aggregate with multiple vesicles. Thus, high affinity binding of hGIIA to anionic vesicles is a complex process and cannot be attributed to a few basic residues on its interfacial binding surface, as is also evident from mutagenesis studies. The main reason hGIIA binds poorly to PC-rich vesicles is that it lacks a tryptophan residue on its interfacial binding surface, a residue that contributes to the high affinity binding of hGX to PC-rich vesicles. Results show that the lag in the onset of hydrolysis of PC vesicles by hGIIA is due in part to the poor affinity of this enzyme for these vesicles. Binding affinity of hGIIA, hGX, and their mutants to PC-rich vesicles is well correlated to the ability of these enzymes to act on the PC-rich outer plasma membrane of mammalian cells.


Analytical Chemistry | 2010

Improved sensitivity mass spectrometric detection of eicosanoids by charge reversal derivatization.

James G. Bollinger; Wallace Thompson; Ying Lai; Rob C. Oslund; Teal S. Hallstrand; Martin Sadilek; František Tureček; Michael H. Gelb

Combined liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) is a powerful method for the analysis of oxygenated metabolites of polyunsaturated fatty acids including eicosanoids. Here we describe the synthesis of a new derivatization reagent N-(4-aminomethylphenyl)pyridinium (AMPP) that can be coupled to eicosanoids via an amide linkage in quantitative yield. Conversion of the carboxylic acid of eicosanoids to a cationic AMPP amide improves sensitivity of detection by 10- to 20-fold compared to negative mode electrospray ionization detection of underivatized analytes. This charge reversal derivatization allows detection of cations rather than anions in the electrospray ionization mass spectrometer, which enhances sensitivity. Another factor is that AMPP amides undergo considerable collision-induced dissociation in the analyte portion rather than exclusively in the cationic tag portion, which allows isobaric derivatives to be distinguished by tandem mass spectrometry, and this further enhances sensitivity and specificity. This simple derivatization method allows prostaglandins, thromboxane B(2), leukotriene B(4), hydroxyeicosatetraenoic acid isomers, and arachidonic acid to be quantified in complex biological samples with limits of quantification in the 200-900 fg range. One can anticipate that the AMPP derivatization method can be extended to other carboxylic acid analytes for enhanced sensitivity detection.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA

Anne-Claire Duchez; Luc H. Boudreau; Gajendra S. Naika; James G. Bollinger; Clémence Belleannée; Nathalie Cloutier; Benoit Laffont; Raifish E. Mendoza-Villarroel; Tania Lévesque; Emmanuelle Rollet-Labelle; Matthieu Rousseau; Isabelle Allaeys; Jacques J. Tremblay; Patrice E. Poubelle; Gérard Lambeau; Marc Pouliot; Patrick Provost; Denis Soulet; Michael H. Gelb; Eric Boilard

Significance On activation, blood platelets package components from their cytoplasm into microparticles (MPs), tiny vesicles released by cytoplasmic membrane budding and shedding. Given that MPs can impact other cellular lineages on internalization, we aimed to decipher the mechanisms promoting MP internalization by cellular recipients. We modeled MP internalization by neutrophils and identified a predominant lipid, 12(S)-hydroxyeicosatetranoic acid, as a mediator critical for the promotion of MP internalization. MPs were found inside neutrophils from individuals with rheumatoid arthritis, and their presence in neutrophils in the joints of mice treated with arthritogenic serum is dependent on the expression of enzymes implicated in the generation of 12(S)-hydroxyeicosatetranoic acid. These findings reveal a unique molecular mechanism implicated in MP internalization relevant to inflammatory processes. Platelets are anucleated blood elements highly potent at generating extracellular vesicles (EVs) called microparticles (MPs). Whereas EVs are accepted as an important means of intercellular communication, the mechanisms underlying platelet MP internalization in recipient cells are poorly understood. Our lipidomic analyses identified 12(S)-hydroxyeicosatetranoic acid [12(S)-HETE] as the predominant eicosanoid generated by MPs. Mechanistically, 12(S)-HETE is produced through the concerted activity of secreted phospholipase A2 IIA (sPLA2-IIA), present in inflammatory fluids, and platelet-type 12-lipoxygenase (12-LO), expressed by platelet MPs. Platelet MPs convey an elaborate set of transcription factors and nucleic acids, and contain mitochondria. We observed that MPs and their cargo are internalized by activated neutrophils in the endomembrane system via 12(S)-HETE. Platelet MPs are found inside neutrophils isolated from the joints of arthritic patients, and are found in neutrophils only in the presence of sPLA2-IIA and 12-LO in an in vivo model of autoimmune inflammatory arthritis. Using a combination of genetically modified mice, we show that the coordinated action of sPLA2-IIA and 12-LO promotes inflammatory arthritis. These findings identify 12(S)-HETE as a trigger of platelet MP internalization by neutrophils, a mechanism highly relevant to inflammatory processes. Because sPLA2-IIA is induced during inflammation, and 12-LO expression is restricted mainly to platelets, these observations demonstrate that platelet MPs promote their internalization in recipient cells through highly regulated mechanisms.


The Journal of Physiology | 2007

Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA2α activity

Deri Morgan; Vladimir V. Cherny; Alison Finnegan; James G. Bollinger; Michael H. Gelb; Thomas E. DeCoursey

The prevailing hypothesis that a signalling pathway involving cPLA2α is required to enhance the gating of the voltage‐gated proton channel associated with NADPH oxidase was tested in human eosinophils and murine granulocytes. This hypothesis invokes arachidonic acid (AA) liberated by cPLA2α as a final activator of proton channels. In human eosinophils studied in the perforated‐patch configuration, phorbol myristate acetate (PMA) stimulation elicited NADPH oxidase‐generated electron current (Ie) and enhanced proton channel gating identically in the presence or absence of three specific cPLA2α inhibitors, Wyeth‐1, pyrrolidine‐2 and AACOCF3 (arachidonyl trifluoromethyl ketone). In contrast, PKC inhibitors GFX (GF109203X) or staurosporine prevented the activation of either proton channels or NADPH oxidase. PKC inhibition during the respiratory burst reversed the activation of both molecules, suggesting that ongoing phosphorylation is required. This effect of GFX was inhibited by okadaic acid, implicating phosphatases in proton channel deactivation. Proton channel activation by AA was partially reversed by GFX or staurosporine, indicating that AA effects are due in part to activation of PKC. In granulocytes from mice with the cPLA2α gene disrupted (knockout mice), PMA or fMetLeuPhe activated NADPH oxidase and proton channels in a manner indistinguishable from the responses of control cells. Thus, cPLA2α is not essential to activate the proton conductance or for a normal respiratory burst. Instead, phosphorylation of the proton channel or an activating molecule converts the channel to its activated gating mode. The existing paradigm for regulation of the concerted activity of proton channels and NADPH oxidase must be revised.


Journal of Biological Chemistry | 2009

Role of phosphorylation and basic residues in the catalytic domain of cytosolic phospholipase A2α in regulating interfacial kinetics and binding and cellular function

Dawn E. Tucker; Moumita Ghosh; Farideh Ghomashchi; Robyn Loper; Saritha Suram; Bonnie St. John; Milena Girotti; James G. Bollinger; Michael H. Gelb; Christina C. Leslie

Group IVA cytosolic phospholipase A2 (cPLA2α) is regulated by phosphorylation and calcium-induced translocation to membranes. Immortalized mouse lung fibroblasts lacking endogenous cPLA2α (IMLF-/-) were reconstituted with wild type and cPLA2α mutants to investigate how calcium, phosphorylation, and the putative phosphatidylinositol 4,5-bisphosphate (PIP2) binding site regulate translocation and arachidonic acid (AA) release. Agonists that elicit distinct modes of calcium mobilization were used. Serum induced cPLA2α translocation to Golgi within seconds that temporally paralleled the initial calcium transient. However, the subsequent influx of extracellular calcium was essential for stable binding of cPLA2α to Golgi and AA release. In contrast, phorbol 12-myristate 13-acetate induced low amplitude calcium oscillations, slower translocation of cPLA2α to Golgi, and much less AA release, which were blocked by chelating extracellular calcium. AA release from IMLF-/- expressing phosphorylation site (S505A) and PIP2 binding site (K488N/K543N/K544N) mutants was partially reduced compared with cells expressing wild type cPLA2α, but calcium-induced translocation was not impaired. Consistent with these results, Ser-505 phosphorylation did not change the calcium requirement for interfacial binding and catalysis in vitro but increased activity by 2-fold. Mutations in basic residues in the catalytic domain of cPLA2α reduced activation by PIP2 but did not affect the concentration of calcium required for interfacial binding or phospholipid hydrolysis. The results demonstrate that Ser-505 phosphorylation and basic residues in the catalytic domain principally act to regulate cPLA2α hydrolytic activity.

Collaboration


Dive into the James G. Bollinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gérard Lambeau

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Sadilek

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan G. Singer

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morgane Rouault

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Rob C. Oslund

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge