James G. Gehling
University of Adelaide
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James G. Gehling.
Geology | 2013
James G. Gehling; Mary L. Droser
Patterns of origination, evolution, and extinction of early animal life on this planet are largely interpreted from the fossils of the Precambrian soft-bodied Ediacara Biota, spanning nearly 40 m.y. of the terminal Ediacaran period. Localities containing these fossils are loosely considered as part of either the Avalon, White Sea, or Nama Associations. These associations have been interpreted to have temporal, paleobiogeographic, preservational, and/or paleoenvironmental significance. Surprisingly, elements of all three associations occur within the Ediacara Member of the Rawnsley Quartzite of South Australia. An analysis of over 5000 specimens demonstrates that fossil distribution is strongly controlled by facies and taphonomy rather than time or biogeography and that individual taxa vary considerably in their environmental tolerance and taphonomic integrity. The recognition that these taxa represent organisms living in various distinct environments, both juxtaposed and shared, holds strong implications for our interpretation of the record of early animal life on this planet and questions the biostratigraphic utility of the three associations. Furthermore, although in situ soft-bodied preservation provides a unique perspective on composition of benthic fossil assemblages, the record should not be interpreted as a simple “snapshot”. Fossil beds represent a range of preservational modifications varying from current winnowed census samples of benthic communities at different depths and ecological maturity, to entirely transported assemblages. Unless the appropriate environments and taphonomic conditions are present for certain taxa, the absence of a particular taxon may or may not indicate its extinction in space or time.
Journal of Paleontology | 2014
James G. Gehling; Bruce Runnegar; Mary L. Droser
Abstract Ediacara fan-shaped sets of paired scratches Kimberichnus teruzzii from the Ediacara Member of the Rawnsley Quartzite, South Australia, and the White Sea region of Russia, represent the earliest known evidence in the fossil record of feeding traces associated with the responsible bilaterian organism. These feeding patterns exclude arthropod makers and point to the systematic feeding excavation of seafloor microbial mats by large bilaterians of molluscan grade. Since the scratch traces were made into microbial mats, animals could crawl over previous traces without disturbing them. The trace maker is identified as Kimberella quadrata, whose death masks co-occur with the mat excavation traces in both Russia and South Australia. The co-occurrence of animals and their systematic feeding traces in the record of the Ediacara biota supports previous trace fossil evidence that bilaterians existed globally before the Cambrian explosion of life in the ocean.
Evolution & Development | 2015
David A. Gold; Bruce Runnegar; James G. Gehling; David K. Jacobs
Despite numerous attempts, classification of the Precambrian fossil Dickinsonia has eluded scientific consensus. This is largely because Dickinsonia and its relatives are structurally simple, lacking morphological synapomorphies to clarify their relationship to modern taxa. However, there is increasing precedence for using ontogeny to constrain enigmatic fossils, and growth of the type species Dickinsonia costata is well understood. This study formalizes the connection between ontogeny in Dickinsonia—which grows by the addition of metameric units onto one end of its primary axis—with terminal addition, defined as growth and patterning from a posterior, subtermial growth zone. We employ ancestral state reconstruction and stochastic character mapping to conclude that terminal addition is a synapomorphy of bilaterian animals. Thus, terminal addition allies Dickinsonia with the bilaterians, providing evidence that large stem‐ or crown‐group bilaterians made up a significant proportion of the Precambrian biota. This study also illustrates the potential for combining developmental and phylogenetic data in constraining the placement of ancient problematic fossil taxa on the evolutionary tree.
Journal of the Geological Society | 2016
John R. Paterson; Diego C. García-Bellido; James B. Jago; James G. Gehling; Michael S. Y. Lee; Gregory D. Edgecombe
Recent fossil discoveries from the lower Cambrian Emu Bay Shale (EBS) on Kangaroo Island, South Australia, have provided critical insights into the tempo of the Cambrian explosion of animals, such as the origin and seemingly rapid evolution of arthropod compound eyes, as well as extending the geographical ranges of several groups to the East Gondwanan margin, supporting close faunal affinities with South China. The EBS also holds great potential for broadening knowledge on taphonomic pathways involved in the exceptional preservation of fossils in Cambrian Konservat-Lagerstätten. EBS fossils display a range of taphonomic modes for a variety of soft tissues, especially phosphatization and pyritization, in some cases recording a level of anatomical detail that is absent from most Cambrian Konservat-Lagerstätten.
Journal of Paleontology | 2014
Mary L. Droser; James G. Gehling; Mary E. Dzaugis; Martin J. Kennedy; Dennis Rice; Michael F. Allen
Abstract Nilpenia rossi new genus new species, described here from the Ediacara Member (Rawnsley Quartzite, South Australia), provides evidence of a Precambrian macroscopic sessile sediment-dweller. Nilpenia, ranging up to 30 cm in diameter, consists of two zones, a complex central area surrounded by radiating, dichotomously branching structures that decrease in diameter from the center to the outer edges. Other elements of the Ediacara Biota are interpreted to have been mat-encrusters but Nilpenia uniquely grew within the upper millimeters of the actual sediment displacing sediment with growth. This sediment surface was rippled and cohesive and may well have included an endobenthic mat. The branching network on the upper surface of the organisms would have been in contact with the water. The phylogenetic relationships of the Ediacara biota are not well constrained and Nilpenia is no exception. However, the morphology and ecology of Nilpenia represent a novel growth strategy present in the Ediacaran and not common today.
BMC Evolutionary Biology | 2014
Diego C. García-Bellido; Michael S. Y. Lee; Gregory D. Edgecombe; James B. Jago; James G. Gehling; John R. Paterson
BackgroundVetulicolians are one of the most problematic and controversial Cambrian fossil groups, having been considered as arthropods, chordates, kinorhynchs, or their own phylum. Mounting evidence suggests that vetulicolians are deuterostomes, but affinities to crown-group phyla are unresolved.ResultsA new vetulicolian from the Emu Bay Shale Konservat-Lagerstätte, South Australia, Nesonektris aldridgei gen. et sp. nov., preserves an axial, rod-like structure in the posterior body region that resembles a notochord in its morphology and taphonomy, with notable similarity to early decay stages of the notochord of extant cephalochordates and vertebrates. Some of its features are also consistent with other structures, such as a gut or a coelomic cavity.ConclusionsPhylogenetic analyses resolve a monophyletic Vetulicolia as sister-group to tunicates (Urochordata) within crown Chordata, and this holds even if they are scored as unknown for all notochord characters. The hypothesis that the free-swimming vetulicolians are the nearest relatives of tunicates suggests that a perpetual free-living life cycle was primitive for tunicates. Characters of the common ancestor of Vetulicolia?+?Tunicata include distinct anterior and posterior body regions - the former being non-fusiform and used for filter feeding and the latter originally segmented - plus a terminal mouth, absence of pharyngeal bars, the notochord restricted to the posterior body region, and the gut extending to the end of the tail.
Journal of Paleontology | 2018
Lily M. Reid; Diego C. García-Bellido; James G. Gehling
Abstract. Despite 70 years of study, Dickinsonia remains one of the Ediacara biotas most enigmatic taxa with both morphological characters and phylogenetic affinities still debated. A large population of relatively small Dickinsonia costata present on a semi-contiguous surface from the Crisp Gorge fossil locality in the Flinders Ranges (South Australia) provides an opportunity to investigate this taxon in its juvenile form. This population supports earlier findings that suggest D. costatas early growth was isometric, based on the relationship between measured variables of length and width. The number of body units increases with length, but at a decreasing rate. A correlation between a previously described physical feature, present as a shrinkage rim partially surrounding some specimens and a novel, raised lip in some specimens, suggests that both features may have been the result of a physical contraction in response to the burial process, rather than due to a gradual loss of mass during early diagenesis. A marked protuberance in 15% of the population is also noted in limited specimens within the South Australian Museum collections and appears to be present only in juvenile D. costata. Both the abundance and narrow size range of this population support the notion that Dickinsonia was a hardy opportunist, capable of rapid establishment and growth on relatively immature textured organic-mat substrates.
Australian Journal of Earth Sciences | 2018
Scott D. Evans; P. W. Dzaugis; Mary L. Droser; James G. Gehling
We present findings from the newly discovered fossiliferous bed, TB-ARB, from the Ediacara Member exposed at the National Heritage Site, Nilpena Station, west of the Flinders Ranges, South Australi...
Australian Journal of Earth Sciences | 2018
Christine M.S. Hall; Mary L. Droser; E. C. Clites; James G. Gehling
There are multiple tri-radially symmetric taxa among the Ediacara Biota, but the tri-radial body plan is unique to this time; taxa with threefold symmetry go extinct by the beginning of the Cambria...
Australian Journal of Earth Sciences | 2018
Mary L. Droser; Scott D. Evans; P. W. Dzaugis; Emily B. Hughes; James G. Gehling
Attenborites janeae gen. et sp. nov., is a new enigmatic fossil from the Ediacara Member of the Rawnsley Quartzite, South Australia. Attenborites is a well-defined irregular oval to circular fossil...