James G. Jackson
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James G. Jackson.
Cancer Cell | 2012
James G. Jackson; Vinod Pant; Qin Li; Leslie L. Chang; Alfonso Quintás-Cardama; Daniel Garza; Omid Tavana; Peirong Yang; Taghi Manshouri; Yi Li; Adel K. El-Naggar; Guillermina Lozano
Studies on the role of TP53 mutation in breast cancer response to chemotherapy are conflicting. Here, we show that, contrary to dogma, MMTV-Wnt1 mammary tumors with mutant p53 exhibited a superior clinical response compared to tumors with wild-type p53. Doxorubicin-treated p53 mutant tumors failed to arrest proliferation, leading to abnormal mitoses and cell death, whereas p53 wild-type tumors arrested, avoiding mitotic catastrophe. Senescent tumor cells persisted, secreting senescence-associated cytokines exhibiting autocrine/paracrine activity and mitogenic potential. Wild-type p53 still mediated arrest and inhibited drug response even in the context of heterozygous p53 point mutations or absence of p21. Thus, we show that wild-type p53 activity hinders chemotherapy response and demonstrate the need to reassess the paradigm for p53 in cancer therapy.
Oncogene | 2001
James G. Jackson; Xihong Zhang; Toshiyuki Yoneda; Douglas Yee
Insulin-like growth factors (IGFs) regulate breast cancer cell proliferation, protect cells from apoptosis, and enhance metastasis. In this study, we examined the IGF signaling pathway in two breast cancer cell lines selected for metastatic behavior. LCC6 was selected for growth as an ascites tumor in athymic mice from parental MDA-MB-435 cells (435P). The MDA-231BO cell line was derived from osseous metastases that formed after intracardiac injection of the MDA-MB-231 cell line in athymic mice. Compared to the parental cell lines, IGF-I treatment enhanced IRS-2 phosphorylation over IRS-1 in the metastatic variants. IGF-I stimulated cell migration in the variant cells, but not in the parental cells. To determine the role for IRS-2 in IGF-mediated motility, we transfected MDA-231BO cells with an anti-sense IRS-2 construct. Transfected cells had decreased levels of IRS-2 with diminished IGF-mediated motility and anchorage independent growth when compared to control cells. However, adherence to fibronectin was enhanced in the transfected cells compared to MDA-231BO cells. Our data show that breast cancer cells selected for metastatic behavior in vivo have increased IRS-2 activation and signaling. In these cells, IGF-I enhances cell adhesion and motility suggesting that IRS-2 may mediate these aspects of the malignant phenotype.
Cancer Research | 2006
James G. Jackson; Olivia M. Pereira-Smith
Replicative senescence is the terminal growth arrest that most normal human cells enter into after a fixed number of divisions in vitro, limiting the proliferative potential of a cell and preventing genomic instability caused by critically short telomeres. Thus, senescence presents a tumor-suppressive mechanism and a barrier to tumor formation. However, senescent cells are inherently resistant to apoptosis and, as they accumulate in aging tissues, may contribute to organ dysfunction and promote tumor progression as part of the stromal environment. Replicative life span in normal human cells can be extended by inactivation of the tumor suppressor gene p53 or its direct target, the cyclin-dependent kinase inhibitor p21, suggesting a direct role for this pathway in senescence. However, p53 recruitment to promoters of target genes during replicative senescence has not been shown in live cells. In this study, we used chromatin immunoprecipitation to determine that p53 preferentially occupied the promoters of growth arrest genes p21 and GADD45 in senescent normal human diploid fibroblasts but not the promoters of other target genes that recruited p53 following doxorubicin-induced DNA damage, such as apoptosis regulators TNFRSF10b, TNFRSF6, and PUMA. This differential recruitment of p53 in senescent versus doxorubicin-treated fibroblasts was accompanied by differences in post-translational modification of p53. These data provide mechanisms for both the growth arrest mediated by p53 and the resistant nature of senescent cells to apoptosis despite p53 activity.
Cancer Research | 2004
James G. Jackson; Patricia J. St. Clair; Mark X. Sliwkowski; Michael G. Brattain
Due to heterodimerization and a variety of stimulating ligands, the ErbB receptor system is both diverse and flexible, which proves particularly advantageous to the aberrant signaling of cancer cells. However, specific mechanisms of how a particular receptor contributes to generating the flexibility that leads to aberrant growth regulation have not been well described. We compared the utilization of ErbB2 in response to epidermal growth factor (EGF) and heregulin stimulation in colon carcinoma cells. Anti-ErbB2 monoclonal antibody 2C4 blocked heregulin-stimulated phosphorylation of ErbB2 and ErbB3; activation of mitogen-activated protein kinase (MAPK), phosphatidylinositol 3′-kinase (PI3K), and Akt; proliferation; and anchorage-independent growth. 2C4 blocked EGF-mediated phosphorylation of ErbB2 and inhibited PI3K/Akt and anchorage-independent growth but did not affect ErbB1 or MAPK. Immunoprecipitations showed that ErbB3 and Grb2-associated binder (Gab) 1 were phosphorylated and associated with PI3K activity after heregulin treatment and that Gab1 and Gab2, but not ErbB3, were phosphorylated and associated with PI3K activity after EGF treatment. These data show that monoclonal antibody 2C4 inhibited all aspects of heregulin signaling as well as anchorage-independent and monolayer growth. Furthermore, we identify ErbB2 as a critical component of EGF signaling to the Gab1/Gab2-PI3K-Akt pathway and anchorage-independent growth, but EGF stimulation of MAPK and monolayer growth can occur efficiently without the contribution of ErbB2.
Cell Stem Cell | 2010
Hussein A. Abbas; Daniela R. Maccio; Süleyman Coşkun; James G. Jackson; Amy L. Hazen; Tiffany M. Sills; M. James You; Karen K. Hirschi; Guillermina Lozano
Mdm2 is an E3 ubiquitin ligase that targets p53 for degradation. p53(515C) (encoding p53R172P) is a hypomorphic allele of p53 that rescues the embryonic lethality of Mdm2(-/-) mice. Mdm2(-/-) p53(515C/515C) mice, however, die by postnatal day 13 resulting from hematopoietic failure. Hematopoietic stem cells and progenitors of Mdm2(-/-) p53(515C/515C) mice were normal in fetal livers but were depleted in postnatal bone marrows. After birth, these mice had elevated reactive oxygen species (ROS) thus activating p53R172P. In the absence of Mdm2, stable p53R172P induced ROS and cell cycle arrest, senescence, and cell death in the hematopoietic compartment. This phenotype was partially rescued with antioxidant treatment and upon culturing of hematopoietic cells in methycellulose at 3% oxygen. p16 was also stabilized because of ROS, and its loss increased cell cycling and partially rescued hematopoiesis and survival. Thus, Mdm2 is required to control ROS-induced p53 levels for sustainable hematopoiesis.
Cancer Cell | 2010
Sean M. Post; Alfonso Quintás-Cardama; Vinod Pant; Tomoo Iwakuma; Amir N. Hamir; James G. Jackson; Daniela R. Maccio; Gareth L. Bond; David G. Johnson; Arnold J. Levine; Guillermina Lozano
MDM2, a negative regulator of p53, is elevated in many cancers that retain wild-type p53. A single nucleotide polymorphism (SNP) in the human MDM2 promoter increases the affinity of Sp1 resulting in elevated MDM2 levels. We generated mice carrying either the MDM2(SNP309T) or the MDM2(SNP309G) allele to address the impact of MDM2(SNP309G) on tumorigenesis. Mdm2(SNP309G/G) cells exhibit elevated Mdm2 levels, reduced p53 levels, and decreased apoptosis. Importantly, some Mdm2(SNP309G/G) mice succumbed to tumors before 1 year of age, suggesting that this allele increases tumor risk. Additionally, the Mdm2(SNP309G) allele potentiates the tumor phenotype and alters tumor spectrum in mice inheriting a p53 hot-spot mutation. These data provide causal evidence for increased cancer risk in carriers of the Mdm2(SNP309G) allele.
Oncogene | 2000
James G. Jackson; Jeffrey I. Kreisberg; Alan P Koterba; Douglas Yee; Michael G. Brattain
Akt, when activated by IGF/insulin, can phosphorylate forkhead transcription factors. We undertook this study to determine whether epidermal growth factor (EGF) treatment could produce a signaling cascade resulting in phosphorylation of the forkhead transcription factor FKHR in a breast cancer cell line, MDA-MB-231. After establishing ErbB1, cbl, PI3 kinase and Akt were activated in EGF treated MDA-MB-231, we determined by immunoblot with FKHR antiserum that the electrophoretic mobility of FKHR was retarded after EGF treatment. This mobility retardation was reversible by treatment with alkaline phosphatase, and immunoblot with phospho-Ser256 FKHR antibody further confirmed phosphorylation on an Akt consensus site after EGF treatment. EGF stimulated FKHR phosphorylation was blocked by the PI3 kinase inhibitor LY294002, and the ErbB1 inhibitor AG1478. FKHR immunoblotting after purification of nuclear and cytoplasmic proteins showed that EGF induced a simultaneous increase of FKHR in the cytoplasm and decrease in the nucleus. This finding was confirmed by immunofluorescence staining. Treatment of cells with pharmacological inhibitors of PI3 kinase or ErbB1 blocked this effect. Thus, these results demonstrate the phosphorylation and nuclear exclusion of FKHR after EGF treatment by a PI3 kinase dependent mechanism, and represent the first report of growth factor regulation of endogenous FKHR localization
Molecular and Cellular Biology | 2006
James G. Jackson; Olivia M. Pereira-Smith
ABSTRACT When treated with DNA-damaging chemotherapy agents, many cancer cells, in vivo and in vitro, undergo a terminal growth arrest and acquire a senescence-like phenotype. We investigated the molecular basis for this in breast cancer cells following a 2-hour treatment with 1 μM doxorubicin. Treated cells arrested in G1 and G2 phases of the cell cycle, with concomitant reductions in S-phase and G2-M regulatory genes. p53 and p21 protein levels increased within hours after treatment and were maintained for 5 to 6 days but were reduced 8 days posttreatment, though the cells remained growth arrested. Levels of p130 rose after drug treatment, and it was the primary RB family member recruited to the S-phase promoters cyclin A and PCNA and G2-M promoters cyclin B and cdc2, remaining present for the entire 8-day time period. In contrast, p107 protein and promoter occupancy levels declined sharply after drug treatment. RB was recruited to only the PCNA promoter. In MCF-7 cells with p130 knockdown, p107 compensated for p130 loss at all cell cycle gene promoters examined, allowing cells to retain the growth arrest phenotype. Cells with p130 and p107 knockdown similarly arrested, while cells with knockdown of all three family members failed to downregulate cyclin A and cyclin B. These results demonstrate a mechanistic role for p130 and compensatory roles for p107 and RB in the long-term senescence-like growth arrest response of breast cancer cells to DNA damage.
Journal of Clinical Investigation | 2011
Yongxing Wang; Young Ah Suh; Maren Y. Fuller; James G. Jackson; Shunbin Xiong; Tamara Terzian; Alfonso Quintás-Cardama; James A. Bankson; Adel K. El-Naggar; Guillermina Lozano
The transcription factor p53 is a tumor suppressor. As such, the P53 gene is frequently altered in human cancers. However, over 80% of the P53 mutations found in human cancers are missense mutations that lead to expression of mutant proteins that not only lack p53 transcriptional activity but exhibit new functions as well. Recent studies show that restoration of p53 expression leads to tumor regression in mice carrying p53 deletions. However, the therapeutic efficacy of restoring p53 expression in tumors containing p53 missense mutations has not been evaluated. Here we demonstrate that restoring wild-type p53 expression halted tumor growth in mice inheriting a p53(R172H) missense mutation that is equivalent to a P53 missense mutation detected in approximately 6% of human cancers. However, it did not lead to tumor regression, as was observed in mice lacking p53. We further showed that the dominant-negative effect of the mutant p53 encoded by p53(R172H) dampened the activity of the restored wild-type p53. We therefore conclude that in a mutant p53 background, p53 restoration has the therapeutic potential to suppress tumor progression. Our findings support using p53 restoration as a strategy to treat human cancers with P53 missense mutations and provide direction for optimizing p53 restoration in cancer therapy.
Cancer Research | 2011
Young-Ah Suh; Sean M. Post; Ana C. Elizondo-Fraire; Daniela R. Maccio; James G. Jackson; Adel K. El-Naggar; Carolyn S. Van Pelt; Tamara Terzian; Guillermina Lozano
p53 levels are tightly regulated in normal cells, and thus, the wild-type p53 protein is nearly undetectable until stimulated through a variety of stresses. In response to stress, p53 is released from its negative regulators, mainly murine double minute 2 (Mdm2), allowing p53 to be stabilized to activate cell-cycle arrest, senescence, and apoptosis programs. Many of the upstream signals that regulate wild-type p53 are known; however, limited information for the regulation of mutant p53 exists. Previously, we showed that wild-type and mutant p53R172H are regulated in a similar manner in the absence of Mdm2 or p16. In addition, this stabilization of mutant p53 is responsible for the gain-of-function metastatic phenotype observed in the mouse. In this report, we examined the role of oncogenes, DNA damage, and reactive oxygen species, signals that stabilize wild-type p53, on the stabilization of mutant p53 in vivo and the consequences of this expression on tumor formation and survival. These factors stabilized mutant p53 protein which oftentimes contributed to exacerbated tumor phenotypes. These findings, coupled with the fact that patients carry p53 mutations without stabilization of p53, suggest that personalized therapeutic schemes may be needed for individual patients depending on their p53 status.