Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James G. Longstaffe is active.

Publication


Featured researches published by James G. Longstaffe.


Journal of Magnetic Resonance | 2012

Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

Denis Courtier-Murias; Hashim Farooq; Hussain Masoom; Adolfo Botana; Ronald Soong; James G. Longstaffe; Myrna J. Simpson; Werner E. Maas; Michael Fey; Brian Andrew; Jochem Struppe; Howard Hutchins; Sridevi Krishnamurthy; Rajeev Kumar; Martine Monette; Henry J. Stronks; Alan Hume; André J. Simpson

Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate (1)H and (13)C spectra for the different phases. In addition, (19)F performance is also addressed. To illustrate the capability of (19)F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.


Environmental Science & Technology | 2010

Identifying Components in Dissolved Humic Acid That Bind Organofluorine Contaminants using 1H{19F} Reverse Heteronuclear Saturation Transfer Difference NMR Spectroscopy

James G. Longstaffe; Myrna J. Simpson; Werner E. Maas; André J. Simpson

Interactions between dissolved peat humic acid and two structurally dissimilar organofluorine compounds, perfluoro-2-naphthol and perfluoro-octanoic acid, are probed using a novel (1)H{(19)F} Nuclear Magnetic Resonance (NMR) Spectroscopy technique based on the Saturation Transfer Difference (STD) experiment. This technique is used here to show selectively only those regions of the (1)H NMR spectrum of humic acid that arise from chemical constituents interacting with perfluorinated organic compounds. This approach provides a tool for high-resolution analysis of interactions between contaminants and soil organic matter (SOM) directly at the molecular level. Soil organic matter is a chemically heterogeneous mixture, and traditional techniques used to study sorption or binding phenomenon are unable to resolve multiple processes occurring simultaneously at distinct chemical moieties. Here, multiple interaction domains are identified based on known chemical constituents of humic acid, most notably from lignin- and protein-derived material. Specifically, perfluoro-2-naphthol is shown to interact with lignin, protein, and aliphatic material; however, preference is exhibited for lignin-derived domains, while perfluoro-octanoic acid exhibits near exclusive preference for the protein-derived domains of humic acid.


Environmental Science & Technology | 2012

In-Situ Molecular-Level Elucidation of Organofluorine Binding Sites in a Whole Peat Soil

James G. Longstaffe; Denis Courtier-Murias; Ronald Soong; Myrna J. Simpson; Werner E. Maas; Michael Fey; Howard Hutchins; Sridevi Krishnamurthy; Jochem Struppe; Mehran Alaee; Rajeev Kumar; Martine Monette; Henry J. Stronks; André J. Simpson

The chemical nature of xenobiotic binding sites in soils is of vital importance to environmental biogeochemistry. Interactions between xenobiotics and the naturally occurring organic constituents of soils are strongly correlated to environmental persistence, bioaccessibility, and ecotoxicity. Nevertheless, because of the complex structural and chemical heterogeneity of soils, studies of these interactions are most commonly performed indirectly, using correlative methods, fractionation, or chemical modification. Here we identify the organic components of an unmodified peat soil where some organofluorine xenobiotic compounds interact using direct molecular-level methods. Using (19)F→(1)H cross-polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, the (19)F nuclei of organofluorine compounds are used to induce observable transverse magnetization in the (1)H nuclei of organic components of the soil with which they interact after sorption. The observed (19)F→(1)H CP-MAS spectra and dynamics are compared to those produced using model soil organic compounds, lignin and albumin. It is found that lignin-like components can account for the interactions observed in this soil for heptafluoronaphthol (HFNap) while protein structures can account for the interactions observed for perfluorooctanoic acid (PFOA). This study employs novel comprehensive multi-phase (CMP) NMR technology that permits the application of solution-, gel-, and solid-state NMR experiments on intact soil samples in their swollen state.


Environmental Toxicology and Chemistry | 2011

Understanding solution‐state noncovalent interactions between xenobiotics and natural organic matter using 19F/1H heteronuclear saturation transfer difference nuclear magnetic resonance spectroscopy

James G. Longstaffe; André J. Simpson

A combination of forward and reverse heteronuclear ((19)F/(1)H) saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopic techniques were applied to characterize the noncovalent interactions between perfluorinated aromatic xenobiotics and dissolved humic acid. These NMR techniques produce detailed molecular-level descriptions of weak noncovalent associations between components in complex environmental mixtures, allowing the mechanisms underlying these interactions to be explored; (19)F observed heteronuclear STD (H-STD) is used to describe the average molecular orientation of the xenobiotics during their interactions with humic acid, whereas (1)H observed reverse-heteronuclear STD (RH-STD) is used to both identify and quantify preferences exhibited by xenobiotics for interactions at different types of humic acid moieties. First, by using H-STD, it is shown that selected aromatic organofluorides orient with their nonfluorine functional groups (OH, NH(2), and COOH) directed away from humic acid during the interactions, suggesting that these functional groups are not specifically involved. Second, the RH-STD experiment is shown to be sensitive to subtle differences in preferred interaction sites in humic acid and is used here to demonstrate preferential interactions at aromatic humic acid sites for selected aromatic xenobiotics, C(10)F(7)OH, and C(6)F(4)X(2), (where X = F, OH, NH(2), NO(2), or COOH), that can be predicted from the electrostatic potential density maps of the xenobiotic.


Chemosphere | 2013

The pH-dependence of organofluorine binding domain preference in dissolved humic acid.

James G. Longstaffe; Denis Courtier-Murias; André J. Simpson

In this study we explore the relationship between solution pH and the distribution of the binding interactions at different domains of a dissolved humic acid (HA) for three xenobiotics: pentafluoroaniline (PFA), pentafluorophenol (PFP), and hexafluorobenzene (HFB). The components of HA where xenobiotic interactions occur are identified using the (1)H{(19)F} Reverse Heteronuclear Saturation Transfer Difference (RHSTD) Nuclear Magnetic Resonance (NMR) spectroscopy experiment. At low pH, PFA and PFP interact preferentially with aromatic components of HA. Increasing pH reduces this preference. Conversely, HFB interacts with all components of HA equally, across the entire pH range. The possible roles of both aromatic-specific interactions and conformational changes of HA behind these observations are explored. It is shown that T-oriented π-π interactions at π-electron accepting HA structures are slightly stronger for PFA and PFP than for HFB. Using DOSY NMR it is shown that the pH-dependence of the interactions is correlated with changes in the conformation of the carbohydrate components of HA rather than with the aromatic components. It is argued that the observed preference for aromatic HA is caused by restricted access to the non-aromatic components of HA at low pH. These HA components form tightly bound hydrophobic domains due to strong inter- and intra-molecular hydrogen bonds. At high pH, these structures open up, making them more available for interactions with polar compounds.


Chemosphere | 2016

A nuclear magnetic resonance study of the dynamics of organofluorine interactions with a dissolved humic acid

James G. Longstaffe; Denis Courtier-Murias; André J. Simpson

A quantitative understanding of the dynamics of the interactions between organofluorine compounds and humic acids will contribute to an improved understanding of the role that Natural Organic Matter plays as a mediator in the fate, transport and distribution of these contaminants in the environment. Here, Nuclear Magnetic Resonance (NMR) spectroscopy-based diffusion measurements are used to estimate the association dynamics between dissolved humic acid and selected organofluorine compounds: pentafluoroaniline, pentafluorophenol, potassium perfluorooctane sulfonate, and perfluorooctanoic acid. Under the conditions used here, the strength of the association with humic acid increases linearly as temperature decreases for all compounds except for perfluorooctanoic acid, which exhibits divergent behavior with a non-linear decrease in the extent of interaction as temperature decreases. A general interaction mechanism controlled largely by desolvation effects is suggested for all compounds examined here except for perfluorooctanoic acid, which exhibits a specific mode of interaction consistent with a proteinaceous binding site. Reverse Heteronuclear Saturation Transfer Difference NMR is used to confirm the identity and nature of the humic acid binding sites.


Magnetic Resonance in Chemistry | 2015

NMR in the environmental industry

James G. Longstaffe; Julie Konzuk

Recent years have seen significant progress in the development of practical applications of NMR in many industries; however, knowledge of the capabilities and potential of NMR amongst environmental professionals still remains rather limited. Generally defined, the environmental industry is comprised of engineers, scientists, and policy makers engaged in the assessment, management, protection, and remediation of sensitive environmental resources. Much of this activity requires a keen understanding of the occurrence and behaviour of anthropogenic chemical and biological agents in complex environmental systems, including wastewater streams, groundwater, soils, and sediments. In general, better information results in better environmental protection and more efficient and effective remediation practices. The primary goal of this short article is to provide an industrial perspective on the current challenges facing the environmental community and to comment on the potential that the development of practical applications of NMR have in improving our ability to characterize and understand these environmental systems.


Journal of Non-crystalline Solids | 2009

Structural investigation of bismuth borate glasses and crystalline phases

Anu Bajaj; Atul Khanna; Banghao Chen; James G. Longstaffe; U-Werner Zwanziger; Josef W. Zwanziger; Yolanda Gómez


Geoderma | 2014

Cross polarization-single pulse/magic angle spinning (CPSP/MAS): A robust technique for routine soil analysis by solid-state NMR

Denis Courtier-Murias; Hashim Farooq; James G. Longstaffe; Brian P. Kelleher; Kris M. Hart; Myrna J. Simpson; André J. Simpson


eMagRes | 2013

Environmental Comprehensive Multiphase NMR

André J. Simpson; Denis Courtier-Murias; James G. Longstaffe; Hussain Masoom; Ronald Soong; Leayen Lam; Andre Sutrisno; Hashim Farooq; Myrna J. Simpson; Werner E. Maas; Michael Fey; Brian Andrew; Jochem Struppe; Howard Hutchins; Sridevi Krishnamurthy; Rajeev Kumar; Martine Monette; Henry J. Stronks

Collaboration


Dive into the James G. Longstaffe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajeev Kumar

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge