Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James G. McNally is active.

Publication


Featured researches published by James G. McNally.


Journal of Cell Biology | 2006

Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks

Michael J. Kruhlak; Arkady Celeste; Graham Dellaire; Oscar Fernandez-Capetillo; Waltraud G. Müller; James G. McNally; David P. Bazett-Jones; André Nussenzweig

The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion (Pilch, D.R., O.A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig, and W.M. Bonner. 2003. Biochem. Cell Biol. 81:123–129; Morrison, A.J., and X. Shen. 2005. Cell Cycle. 4:568–571; van Attikum, H., and S.M. Gasser. 2005. Nat. Rev. Mol. Cell. Biol. 6:757–765). The disruption of DNA integrity induces an alteration of chromatin architecture that has been proposed to activate the DNA damage transducing kinase ataxia telangiectasia mutated (ATM; Bakkenist, C.J., and M.B. Kastan. 2003. Nature. 421:499–506). However, little is known about the physical properties of damaged chromatin. In this study, we use a photoactivatable version of GFP-tagged histone H2B to examine the mobility and structure of chromatin containing DSBs in living cells. We find that chromatin containing DSBs exhibits limited mobility but undergoes an energy-dependent local expansion immediately after DNA damage. The localized expansion observed in real time corresponds to a 30–40% reduction in the density of chromatin fibers in the vicinity of DSBs, as measured by energy-filtering transmission electron microscopy. The observed opening of chromatin occurs independently of H2AX and ATM. We propose that localized adenosine triphosphate–dependent decondensation of chromatin at DSBs establishes an accessible subnuclear environment that facilitates DNA damage signaling and repair.


The EMBO Journal | 2004

E‐cadherin‐mediated adhesion inhibits ligand‐dependent activation of diverse receptor tyrosine kinases

Xiaolan Qian; Tatiana S. Karpova; Allan M. Sheppard; James G. McNally; Douglas R. Lowy

E‐cadherin is an essential adhesion protein as well as a tumor suppressor that is silenced in many cancers. Its adhesion‐dependent regulation of signaling has not been elucidated. We report that E‐cadherin can negatively regulate, in an adhesion‐dependent manner, the ligand‐dependent activation of divergent classes of receptor tyrosine kinases (RTKs), by inhibiting their ligand‐dependent activation in association with decreases in receptor mobility and in ligand‐binding affinity. E‐cadherin did not regulate a constitutively active mutant RTK (Neu*) or the ligand‐dependent activation of LPA receptors or muscarinic receptors, which are two classes of G protein‐coupled receptors. EGFR regulation by E‐cadherin was associated with complex formation between EGFR and E‐cadherin that depended on the extracellular domain of E‐cadherin but was independent of β‐catenin binding or p120‐catenin binding. Transfection of E‐cadherin conferred negative RTK regulation to human melanoma and breast cancer lines with downregulated endogenous E‐cadherin. Abrogation of E‐cadherin regulation may contribute to the frequent ligand‐dependent activation of RTK in tumors.


Journal of Cell Biology | 2002

SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles

Jomon Joseph; Shyh-Han Tan; Tatiana S. Karpova; James G. McNally; Mary Dasso

RanGAP1 was the first documented substrate for conjugation with the ubiquitin-like protein SUMO-1. However, the functional significance of this conjugation has not been fully clarified. We sought to examine RanGAP1 behavior during mitosis. We found that RanGAP1 associates with mitotic spindles and that it is particularly concentrated at foci near kinetochores. Association with kinetochores appeared soon after nuclear envelope breakdown and persisted until late anaphase, but it was lost coincident with nuclear envelope assembly in telophase. A mutant RanGAP1 protein lacking the capacity to be conjugated to SUMO-1 no longer associated with spindles, indicating that conjugation was essential for RanGAP1s mitotic localization. RanBP2, a nuclear pore protein that binds SUMO-1–conjugated RanGAP1 during interphase, colocalized with RanGAP1 on spindles, suggesting that a complex between these two proteins may be involved in mitotic targeting of RanGAP1. This report shows for the first time that SUMO-1 conjugation is required for mitotic localization of RanGAP1, and suggests that a major role of SUMO-1 conjugation to RanGAP1 may be the spatial regulation of the Ran pathway during mitosis.


Molecular and Cellular Biology | 2004

Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes.

Diana A. Stavreva; Waltraud G. Müller; Gordon L. Hager; Carolyn L. Smith; James G. McNally

ABSTRACT Exchange of the glucocorticoid receptor (GR) at promoter target sites provides the only known system in which transcription factor cycling at a promoter is fast, occurring on a time scale of seconds. The mechanism and function of this rapid exchange are unknown. We provide evidence that proteasome activity is required for rapid GR exchange at a promoter. We also show that chaperones, specifically hsp90, stabilize the binding of GR to the promoter, complicating models in which the associated chaperone, p23, has been proposed to induce GR removal. Our results are the first to connect chaperone and proteasome functions in setting the residence time of a transcription factor at a target promoter. Moreover, our results reveal that longer GR residence times are consistently associated with greater transcriptional output, suggesting a new paradigm in which the rate of rapid exchange provides a means to tune transcriptional levels.


EMBO Reports | 2002

Dynamic behavior of transcription factors on a natural promoter in living cells

Matthias Becker; Christopher T. Baumann; Sam John; Dawn A. Walker; Marc Vigneron; James G. McNally; Gordon L. Hager

Through the use of photobleaching techniques, we examined the dynamic interaction of three members of the transcrsiption apparatus with a target promoter in living cells. The glucocorticoid receptor (GR) interacting protein 1 (GRIP‐1) exhibits a half maximal time for fluorescent recovery (τR) of 5 s, reflecting the same rapid exchange as observed for GR. In contrast, the large subunit (RPB1) of RNA polymerase II (pol II) required 13 min for complete fluorescence recovery, consistent with its function as a processive enzyme. We also observe a complex induction profile for the kinetics of GR‐stimulated transcription. Our results indicate that GR and GRIP‐1 as components of the activating complex are in a dynamic equilibrium with the promoter, and must return to the template many times during the course of transcriptional activation.


Nature Methods | 2010

Three-dimensional cellular ultrastructure resolved by X-ray microscopy

Gerd Schneider; Peter Guttmann; Stefan Heim; Stefan Rehbein; Florian Mueller; Kunio Nagashima; J. Bernard Heymann; Waltraud G. Müller; James G. McNally

We developed an X-ray microscope using partially coherent object illumination instead of previously used quasi-incoherent illumination. The design permitted the incorporation of a cryogenic tilt stage, enabling tomography of frozen-hydrated, intact adherent cells. We obtained three-dimensional reconstructions of mouse adenocarcinoma cells at ∼36-nm (Rayleigh) and ∼70-nm (Fourier ring correlation) resolution, which allowed us to visualize the double nuclear membrane, nuclear pores, nuclear membrane channels, mitochondrial cristae and lysosomal inclusions.


Molecular Biology of the Cell | 2009

Brd4 Marks Select Genes on Mitotic Chromatin and Directs Postmitotic Transcription

Anup Dey; Akira Nishiyama; Tatiana S. Karpova; James G. McNally; Keiko Ozato

On entry into mitosis, many transcription factors dissociate from chromatin, resulting in global transcriptional shutdown. During mitosis, some genes are marked to ensure the inheritance of their expression in the next generation of cells. The nature of mitotic gene marking, however, has been obscure. Brd4 is a double bromodomain protein that localizes to chromosomes during mitosis and is implicated in holding mitotic memory. In interphase, Brd4 interacts with P-TEFb and functions as a global transcriptional coactivator. We found that throughout mitosis, Brd4 remained bound to the transcription start sites of many M/G1 genes that are programmed to be expressed at the end of, or immediately after mitosis. In contrast, Brd4 did not bind to genes that are expressed at later phases of cell cycle. Brd4 binding to M/G1 genes increased at telophase, the end phase of mitosis, coinciding with increased acetylation of histone H3 and H4 in these genes. Increased Brd4 binding was accompanied by the recruitment of P-TEFb and de novo M/G1 gene transcription, the events impaired in Brd4 knockdown cells. In sum, Brd4 marks M/G1 genes for transcriptional memory during mitosis, and upon exiting mitosis, this mark acts as a signal for initiating their prompt transcription in daughter cells.


Journal of Cell Biology | 2001

Large-scale chromatin decondensation and recondensation regulated by transcription from a natural promoter

Waltraud G. Müller; Dawn A. Walker; Gordon L. Hager; James G. McNally

We have examined the relationship between transcription and chromatin structure using a tandem array of the mouse mammary tumor virus (MMTV) promoter driving a ras reporter. The array was visualized as a distinctive fluorescent structure in live cells stably transformed with a green fluorescent protein (GFP)-tagged glucocorticoid receptor (GR), which localizes to the repeated MMTV elements after steroid hormone treatment. Also found at the array by immunofluorescence were two different steroid receptor coactivators (SRC1 and CBP) with acetyltransferase activity, a chromatin remodeler (BRG1), and two transcription factors (NFI and AP-2). Within 3 h after hormone addition, arrays visualized by GFP-GR or DNA fluorescent in situ hybridization (FISH) decondensed to varying degrees, in the most pronounced cases from a ∼0.5-μm spot to form a fiber 1–10 μm long. Arrays later recondensed by 3–8 h of hormone treatment. The degree of decondensation was proportional to the amount of transcript produced by the array as detected by RNA FISH. Decondensation was blocked by two different drugs that inhibit polymerase II, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) and α-amanitin. These observations demonstrate a role for polymerase in producing and maintaining decondensed chromatin. They also support fiber-packing models of higher order structure and suggest that transcription from a natural promoter may occur at much higher DNA-packing densities than reported previously.


Nature Cell Biology | 2005

Crm1 is a mitotic effector of Ran-GTP in somatic cells

Alexei Arnaoutov; Yoshiaki Azuma; Katharina Ribbeck; Jomon Joseph; Yekaterina Boyarchuk; Tatiana S. Karpova; James G. McNally; Mary Dasso

The Ran GTPase controls multiple cellular processes, including nuclear transport, mitotic checkpoints, spindle assembly and post-mitotic nuclear envelope reassembly. Here we examine the mitotic function of Crm1, the Ran-GTP-binding nuclear export receptor for leucine-rich cargo (bearing nuclear export sequence) and Snurportin-1 (ref. 3). We find that Crm1 localizes to kinetochores, and that Crm1 ternary complex assembly is essential for Ran-GTP-dependent recruitment of Ran GTPase-activating protein 1 (Ran-GAP1) and Ran-binding protein 2 (Ran-BP2) to kinetochores. We further show that Crm1 inhibition by leptomycin B disrupts mitotic progression and chromosome segregation. Analysis of spindles within leptomycin B-treated cells shows that their centromeres were under increased tension. In leptomycin B-treated cells, centromeres frequently associated with continuous microtubule bundles that spanned the centromeres, indicating that their kinetochores do not maintain discrete end-on attachments to single kinetochore fibres. Similar spindle defects were observed in temperature-sensitive Ran pathway mutants (tsBN2 cells). Taken together, our findings demonstrate that Crm1 and Ran-GTP are essential for Ran-BP2/Ran-GAP1 recruitment to kinetochores, for definition of kinetochore fibres and for chromosome segregation at anaphase. Thus, Crm1 is a critical Ran-GTP effector for mitotic spindle assembly and function in somatic cells.


Cell | 1995

Capping protein levels influence actin assembly and cell motility in dictyostelium

Christopher Hug; Patrick Y. Jay; Indira Reddy; James G. McNally; Paul C. Bridgman; Elliot L. Elson; John A. Cooper

Actin assembly is important for cell motility, but the mechanism of assembly and how it relates to motility in vivo is largely unknown. In vitro, actin assembly can be controlled by proteins, such as capping protein, that bind filament ends. To investigate the function of actin assembly in vivo, we altered the levels of capping protein in Dictyostelium cells and found changes in resting and chemoattractant-induced actin assembly that were consistent with the in vitro properties of capping protein in capping but not nucleation. Significantly, overexpressers moved faster and underexpressers moved slower than control cells. Mutants also exhibited changes in cytoskeleton architecture. These results provide insights into in vivo actin assembly and the role of the actin cytoskeleton in motility.

Collaboration


Dive into the James G. McNally's collaboration.

Top Co-Authors

Avatar

Tatiana S. Karpova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Davide Mazza

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Waltraud G. Müller

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gordon L. Hager

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Diana A. Stavreva

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian L. Sprague

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge