Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James G. Simmons is active.

Publication


Featured researches published by James G. Simmons.


Oncogene | 2007

Suppressor of cytokine signaling 3 (SOCS3) limits damage-induced crypt hyper-proliferation and inflammation-associated tumorigenesis in the colon.

Rachael Rigby; James G. Simmons; Christopher J. Greenhalgh; Warren S. Alexander; Pauline Kay Lund

Intestinal injury or chronic inflammation induce cytokines that promote crypt regeneration and mucosal repair. If excessive or prolonged, such mechanisms may increase colon cancer risk. Factors that terminate or limit cytokine action in intestinal epithelial cells (IEC) may protect against crypt hyperplasia and neoplasia. We hypothesized that suppressor of cytokine signaling-3 (SOCS3) is such a factor. Mice with Vilin-promoter/Cre-recombinase (VC)-mediated IEC-specific SOCS3 gene disruption (VC/HO), WT/HO littermates with floxed but intact SOCS3 genes and VC/WT mice were studied. Colon was examined after acute dextran sodium sulfate (DSS)-induced mucosal injury or after azoxymethane (AOM) and chronic DSS. Signaling pathways were examined in colon, cultured IEC or colon cancer cell lines. VC/HO mice showed no basal phenotype. After acute DSS, VC/HO exhibited enhanced crypt proliferation and crypt hyperplasia and reduced transforming growth factor (TGF) β expression in colon. Inflammation and mucosal damage were similar across genotypes. Following AOM/DSS, VC/HO mice had increased size, number and load of colonic tumors and increased STAT3 and nuclear factor-kappa B (NF-κB) activation in colon. In vitro, SOCS3 overexpression reduced proliferation, IL-6-mediated STAT3 activation and tumor necrosis factor (TNF) α-mediated NF-κB activation. We conclude that cytokine induction of SOCS3 normally provides an intrinsic mechanism to limit injury-induced crypt hyperproliferation and inflammation-associated colon cancer by regulating both STAT3 and NF-κB pathways.


Cancer Epidemiology, Biomarkers & Prevention | 2005

Insulin Resistance, Apoptosis, and Colorectal Adenoma Risk

Temitope O. Keku; Pauline Kay Lund; Joseph A. Galanko; James G. Simmons; John T. Woosley; Robert S. Sandler

Compelling evidence from epidemiologic studies indicates that elevated circulating insulin-like growth factor (IGF)-I, insulin resistance, and associated complications, such as elevated fasting plasma insulin, glucose and free fatty acids, glucose intolerance, increased body mass index, and visceral adiposity, are linked with increased risk of colorectal cancer. However, the role of insulin and markers of glucose control in the development of adenomas, precursors to colorectal cancer, has not been fully explored. We evaluated the relationship between plasma insulin, glucose, IGF-I, IGF-II, IGF-binding protein-3 (IGFBP-3), apoptosis, and colorectal adenomas in a case-control study. Participants were drawn from consenting patients undergoing colonoscopy at the University of North Carolina hospitals (Chapel Hill, NC). Participants were classified as cases or controls based on whether they had one or more colorectal adenomatous polyps. Fasting plasma insulin, IGF-I, IGF-II, and IGFBP-3 levels were assessed by ELISA. Glucose was measured by glucose hexokinase assay. Apoptosis was assessed by morphology on H&E-stained sections. Dietary and lifestyle information were obtained by telephone interview. Logistic regression was used to examine the association between adenoma status and insulin-IGF markers. Adenoma cases (n = 239) and adenoma-free controls (n = 517) provided rectal biopsies and/or blood samples and interview data. Consistent with prior findings, cases were more likely to be males, older, have higher waist-to-hip ratio, lower calcium intake, lower apoptosis, and less likely to report nonsteroidal anti-inflammatory drug use. Those in the highest quartile of insulin (adjusted odds ratio, 2.2; 95% confidence interval, 1.1-4.2) and glucose (adjusted odds ratio, 1.8; 95% confidence interval, 0.9-3.6) were more likely to have an adenoma compared with the lowest quartile. Similarly, subjects in the highest two quartiles of insulin were more likely to be in the lowest two quartiles of apoptosis. Overall, there were no significant differences between mean circulating levels of glucose, IGF-I, IGF-II, and IGFBP-3 among cases and controls and no association between these variables and apoptosis. The results provide novel evidence that elevated insulin and glucose are associated with increased adenoma risk and decreased apoptosis in normal rectal mucosa. These findings suggest that insulin may act early in the adenoma-carcinoma sequence to promote the development of colorectal adenoma by decreasing apoptosis in the normal mucosa.


Gut | 2005

Expression of insulin-like growth factor I by activated hepatic stellate cells reduces fibrogenesis and enhances regeneration after liver injury

Sanz S; Jolanta B. Pucilowska; Liu S; Carlos M. Rodríguez-Ortigosa; Lund Pk; David A. Brenner; Fuller Cr; James G. Simmons; Pardo A; Martínez-Chantar Ml; James A. Fagin; Jesús Prieto

Background/Aim: Hepatic stellate cells (HSCs) express α-smooth muscle actin (αSMA) and acquire a profibrogenic phenotype upon activation by noxious stimuli. Insulin-like growth I (IGF-I) has been shown to stimulate HSCs proliferation in vitro, but it has been reported to reduce liver damage and fibrogenesis when given to cirrhotic rats. Methods: The authors used transgenic mice (SMP8-IGF-I) expressing IGF-I under control of αSMA promoter to study the influence of IGF-I synthesised by activated HSCs on the recovery from liver injury. Results: The transgene was expressed by HSCs from SMP8-IGF-I mice upon activation in culture and in the livers of these animals after CCl4 challenge. Twenty four hours after administration of CCl4 both transgenic and wild type mice showed similar extensive necrosis and increased levels of serum transaminases. However at 72 hours SMP8-IGF-I mice exhibited lower serum transaminases, reduced hepatic expression of αSMA, and improved liver morphology compared with wild type littermates. Remarkably, at this time all eight CCl4 treated wild type mice manifested histological signs of liver necrosis that was severe in six of them, while six out of eight transgenic animals had virtually no necrosis. In SMP8-IGF-I mice robust DNA synthesis occurred earlier than in wild type animals and this was associated with enhanced production of HGF and lower TGFβ1 mRNA expression in the SMP8-IGF-I group. Moreover, Colα1(I) mRNA abundance at 72 hours was reduced in SMP8-IGF-I mice compared with wild type controls. Conclusions: Targeted overexpression of IGF-I by activated HSCs restricts their activation, attenuates fibrogenesis, and accelarates liver regeneration. These effects appear to be mediated in part by upregulation of HGF and downregulation of TGFβ1. The data indicate that IGF-I can modulate the cytokine response to liver injury facilitating regeneration and reducing fibrosis.


American Journal of Physiology-gastrointestinal and Liver Physiology | 1999

Autocrine and paracrine actions of intestinal fibroblast-derived insulin-like growth factors

James G. Simmons; Jolanta B. Pucilowska; P. Kay Lund

Paracrine and autocrine actions of the insulin-like growth factors (IGFs) are inferred by local expression within the bowel. CCD-18Co cells, IEC-6 cells, and immunoneutralization were used to analyze whether IGFs have direct autocrine or paracrine effects on proliferation of cultured intestinal fibroblasts and epithelial cells. Growth factor expression was analyzed by ribonuclease protection assay and RT-PCR. Extracellular matrix (ECM) was analyzed for effects on cell proliferation. CCD-18Co cells express IGF-II mRNAs and low levels of IGF-I mRNA. Conditioned medium from CCD-18Co cells (CCD-CM) stimulated proliferation of IEC-6 and CCD-18Co cells. Neutralization of IGF immunoreactivity in CCD-CM reduced but did not abolish this effect. RT-PCR and immunoneutralization demonstrated that other growth factors contribute to mitogenic activity of CCD-CM. Preincubation of CCD-CM with ECM prepared from IEC-6 or CCD-18Co cells reduced its mitogenic activity. ECM from CCD-18Co cells enhanced growth factor-dependent proliferation of IEC-6 cells. IEC-6 cell ECM inhibited IGF-I action on CCD-18Co cells. We conclude that IGF-II is a potent autocrine mitogen for intestinal fibroblasts. IGF-II interacts with other fibroblast-derived growth factors and ECM to stimulate proliferation of intestinal epithelial cells in a paracrine manner.Paracrine and autocrine actions of the insulin-like growth factors (IGFs) are inferred by local expression within the bowel. CCD-18Co cells, IEC-6 cells, and immunoneutralization were used to analyze whether IGFs have direct autocrine or paracrine effects on proliferation of cultured intestinal fibroblasts and epithelial cells. Growth factor expression was analyzed by ribonuclease protection assay and RT-PCR. Extracellular matrix (ECM) was analyzed for effects on cell proliferation. CCD-18Co cells express IGF-II mRNAs and low levels of IGF-I mRNA. Conditioned medium from CCD-18Co cells (CCD-CM) stimulated proliferation of IEC-6 and CCD-18Co cells. Neutralization of IGF immunoreactivity in CCD-CM reduced but did not abolish this effect. RT-PCR and immunoneutralization demonstrated that other growth factors contribute to mitogenic activity of CCD-CM. Preincubation of CCD-CM with ECM prepared from IEC-6 or CCD-18Co cells reduced its mitogenic activity. ECM from CCD-18Co cells enhanced growth factor-dependent proliferation of IEC-6 cells. IEC-6 cell ECM inhibited IGF-I action on CCD-18Co cells. We conclude that IGF-II is a potent autocrine mitogen for intestinal fibroblasts. IGF-II interacts with other fibroblast-derived growth factors and ECM to stimulate proliferation of intestinal epithelial cells in a paracrine manner.


Gut | 2009

A new animal model of postsurgical bowel inflammation and fibrosis: the effect of commensal microflora

Rachael Rigby; M. R. Hunt; Brooks Scull; James G. Simmons; Karen E. Speck; Michael A. Helmrath; Pauline Kay Lund

Objective: Ileocaecal resection (ICR) is common in Crohn’s disease. Inflammation and fibrosis frequently recur at the site of anastomosis or in the small intestine (SI). No animal models of postsurgical inflammation and fibrosis exist. A model of ICR was developed in interleukin 10 (IL10) null and wild-type (WT) mice to test the hypothesis that ICR promotes postsurgical inflammation and fibrosis in the SI or anastomosis of genetically susceptible IL10 null, but not WT or germ-free (GF)-IL10 null mice. Methods: GF-IL10 null mice were conventionalised (CONV) and 3 weeks later randomised to ICR, transection (T) or no treatment (NoTx). Age-matched conventionally raised (CONV) WT and GF-IL10 null mice received ICR, T or NoTx. Animals were killed 28 days later. Histological scoring, real-time PCR for tumour necrosis factor α and collagen, and immunostaining for CD3+ T cells assessed inflammation and fibrosis. Results: After ICR, CONV-IL10 null, but not CONV-WT mice, developed significant inflammation and fibrosis in the SI and inflammation in anastomosis compared with NoTx or T controls. Fibrosis occurred in the anastomosis of both CONV-IL10 null and CONV-WT mice following ICR. GF-IL10 null mice developed little or no inflammation or fibrosis in the SI or anastomosis after ICR. Conclusions: ICR in CONV-IL10 null mice provides a new animal model of postsurgical inflammation and fibrosis in the SI and anastomosis. Absence of inflammation and fibrosis in the SI of CONV-WT and GF-IL10 null mice following ICR indicates that postsurgical small bowel disease occurs only in genetically susceptible IL10 null mice and is bacteria dependent.


Molecular Cancer Research | 2011

Cytokine Induction of Tumor Necrosis Factor Receptor 2 Is Mediated by STAT3 in Colon Cancer Cells

Kathryn E. Hamilton; James G. Simmons; Shengli Ding; Laurianne Van Landeghem; P. Kay Lund

The IL-6/STAT3 and TNFα/NFκB pathways are emerging as critical mediators of inflammation-associated colon cancer. TNF receptor (TNFR) 2 expression is increased in inflammatory bowel diseases, the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colitis-associated cancer, and by combined interleukin (IL) 6 and TNFα. The molecular mechanisms that regulate TNFR2 remain undefined. This study used colon cancer cell lines to test the hypothesis that IL-6 and TNFα induce TNFR2 via STAT3 and/or NFκB. Basal and IL-6 + TNFα–induced TNFR2 were decreased by pharmacologic STAT3 inhibition. NFκB inhibition had little effect on IL-6 + TNFα–induced TNFR2, but did inhibit induction of endogenous IL-6 and TNFR2 in cells treated with TNFα alone. Chromatin immunoprecipitation (ChIP) revealed cooperative effects of IL-6 + TNFα to induce STAT3 binding to a −1,578 STAT response element in the TNFR2 promoter but no effect on NFκB binding to consensus sites. Constitutively active STAT3 was sufficient to induce TNFR2 expression. Overexpression of SOCS3, a cytokine-inducible STAT3 inhibitor, which reduces tumorigenesis in preclinical models of colitis-associated cancer, decreased cytokine-induced TNFR2 expression and STAT3 binding to the −1,578 STAT response element. SOCS3 overexpression also decreased proliferation of colon cancer cells and dramatically decreased anchorage-independent growth of colon cancer cells, even cells overexpressing TNFR2. Collectively, these studies show that IL-6- and TNFα-induced TNFR2 expression in colon cancer cells is mediated primarily by STAT3 and provide evidence that TNFR2 may contribute to the tumor-promoting roles of STAT3. Mol Cancer Res; 9(12); 1718–31. ©2011 AACR.


Journal of Cell Science | 2013

Insulin receptor isoform switching in intestinal stem cells, progenitors, differentiated lineages and tumors: evidence that IR-B limits proliferation

Sarah F. Andres; James G. Simmons; Amanda T. Mah; M. Agostina Santoro; Laurianne Van Landeghem; P. Kay Lund

Summary Despite evidence for the impact of insulin on intestinal epithelial physiology and pathophysiology, the expression patterns, roles, and regulation of insulin receptor (IR) and IR isoforms in the intestinal epithelium are not well characterized. IR-A is thought to mediate the proliferative effects of insulin or insulin growth factors (IGFs) in fetal or cancer cells. IR-B is considered to be the metabolic receptor for insulin in specialized tissues. This study used a novel Sox9-EGFP reporter mouse that permits isolation of intestinal epithelial stem cells (IESCs), progenitors, enteroendocrine cells and differentiated lineages, the ApcMin/+ mouse model of precancerous adenoma and normal human intestinal and colorectal cancer (CRC) cell lines. We tested the hypothesis that there is differential expression of IR-A or IR-B in stem and tumor cells versus differentiated intestinal epithelial cells (IECs) and that IR-B impacts cell proliferation. Our findings provide evidence that IR-B expression is significantly lower in highly proliferative IESCs and progenitor cells versus post-mitotic, differentiated IECs and in subconfluent and undifferentiated versus differentiated Caco-2 cells. IR-B is also reduced in ApcMin/+ tumors and highly tumorigenic CRC cells. These differences in IR-B were accompanied by altered levels of mRNAs encoding muscleblind-like 2 (MBNL2), a known regulator of IR alternative splicing. Forced IR-B expression in subconfluent and undifferentiated Caco-2 cells reduced proliferation and increased biomarkers of differentiation. Our findings indicate that the impact of insulin on different cell types in the intestinal epithelium might differ depending on relative IR-B∶ IR-A expression levels and provide new evidence for the roles of IR-B to limit proliferation of CRC cells.


BMC Cancer | 2008

Local IGFBP-3 mRNA expression, apoptosis and risk of colorectal adenomas

Temitope O. Keku; Robert S. Sandler; James G. Simmons; Joseph A. Galanko; John T. Woosley; Michelle Proffitt; Oluwaseun Omofoye; Maya McDoom; Pauline Kay Lund

BackgroundIGF binding protein-3 (IGFBP-3) regulates the bioavailability of insulin-like growth factors I and II, and has both anti-proliferative and pro-apoptotic properties. Elevated plasma IGFBP-3 has been associated with reduced risk of colorectal cancer (CRC), but the role of tissue IGFBP-3 is not well defined. We evaluated the association between tissue or plasma IGFBP-3 and risk of colorectal adenomas or low apoptosis.MethodsSubjects were consenting patients who underwent a clinically indicated colonoscopy at UNC Hospitals and provided information on diet and lifestyle. IGFBP-3 mRNA in normal colon was assessed by real time RT-PCR. Plasma IGFBP-3 was measured by ELISA and apoptosis was determined by morphology on H & E slides. Logistic regression was used to compute odds ratio (OR) and 95% confidence intervals.ResultsWe observed a modest correlation between plasma IGFBP-3 and tissue IGFBP-3 expression (p = 0.007). There was no significant association between plasma IGFBP-3 and adenomas or apoptosis. Tissue IGFBP-3 mRNA expression was significantly lower in cases than controls. Subjects in the lowest three quartiles of tissue IGFBP-3 gene expression were more likely to have adenomas. Consistent with previous reports, low apoptosis was significantly associated with increased risk of adenomas (p = 0.003). Surprisingly, local IGFBP-3 mRNA expression was inversely associated with apoptosis.ConclusionLow expression of IGFBP-3 mRNA in normal colonic mucosa predicts increased risk of adenomas. Our findings suggest that local IGFBP-3 in the colon may directly increase adenoma risk but IGFBP-3 may act through a pathway other than apoptosis to influence adenoma risk.


Journal of Biological Chemistry | 2016

miR-30 family controls proliferation and differentiation of intestinal epithelial cell models by directing a broad gene expression program that includes SOX9 and the ubiquitin ligase pathway

Bailey C. E. Peck; John Sincavage; Sydney Feinstein; Amanda T. Mah; James G. Simmons; P. Kay Lund; Praveen Sethupathy

Proliferation and differentiation of intestinal epithelial cells (IECs) occur in part through precise regulation of key transcription factors, such as SOX9. MicroRNAs (miRNAs) have emerged as prominent fine-tuners of transcription factor expression and activity. We hypothesized that miRNAs, in part through the regulation of SOX9, may mediate IEC homeostasis. Bioinformatic analyses of the SOX9 3′-UTR revealed highly conserved target sites for nine different miRNAs. Of these, only the miR-30 family members were both robustly and variably expressed across functionally distinct cell types of the murine jejunal epithelium. Inhibition of miR-30 using complementary locked nucleic acids (LNA30bcd) in both human IECs and human colorectal adenocarcinoma-derived Caco-2 cells resulted in significant up-regulation of SOX9 mRNA but, interestingly, significant down-regulation of SOX9 protein. To gain mechanistic insight into this non-intuitive finding, we performed RNA sequencing on LNA30bcd-treated human IECs and found 2440 significantly increased genes and 2651 significantly decreased genes across three time points. The up-regulated genes are highly enriched for both predicted miR-30 targets, as well as genes in the ubiquitin-proteasome pathway. Chemical suppression of the proteasome rescued the effect of LNA30bcd on SOX9 protein levels, indicating that the regulation of SOX9 protein by miR-30 is largely indirect through the proteasome pathway. Inhibition of the miR-30 family led to significantly reduced IEC proliferation and a dramatic increase in markers of enterocyte differentiation. This in-depth analysis of a complex miRNA regulatory program in intestinal epithelial cell models provides novel evidence that the miR-30 family likely plays an important role in IEC homeostasis.


American Journal of Pathology | 2010

Suppressor of Cytokine Signaling-2 Gene Disruption Promotes ApcMin/+ Tumorigenesis and Activator Protein-1 Activation

Victoria A. Newton; Nicole M. Ramocki; Brooks Scull; James G. Simmons; Kirk K. McNaughton; P. Kay Lund

Epigenetic in vitro and in vivo studies suggest that suppressor of cytokine signaling-2 (SOCS2) may normally limit tumorigenesis in the intestine; however, this theory has not been directly tested. We hypothesized that SOCS2 deficiency promotes spontaneous intestinal tumorigenesis in Apc(Min/+) mice. Therefore, we quantified tumor number, size, and load in the small intestine and colon using SOCS2(+/+)/Apc(Min/+), SOCS2(+/-)/Apc(Min/+), and SOCS2(-/-)/Apc(Min/+) mice and assayed hematocrit as an indirect marker of disease severity. Biochemical and histological assays were used to assess mechanisms. Heterozygous and homozygous disruption of SOCS2 alleles promoted 166 and 441% increases in tumor load in the small intestine, respectively, accelerated development of colon tumors, and caused severe anemia. SOCS2 deletion promoted significant increases in intestinal insulin-like growth factor-I mRNA but did not affect plasma insulin-like growth factor-I. Western blots and immunohistochemical analysis demonstrated that tumor and nontumor intestinal tissue of SOCS2(-/-)/Apc(Min/+) mice had increased serine 727 phosphorylation of signal transducer and activator of transcription 3 compared with SOCS2(+/+)/Apc(Min/+) mice. Moreover, electromobility shift assays showed that SOCS2 deletion did not alter signal transducer and activator of transcription 3 DNA binding. However, tumors and small intestine from SOCS2(-/-)/Apc(Min/+) showed dramatic increases in activator protein-1 (AP-1) DNA binding, and SOCS2 overexpression in vitro reduced levels of AP-1. These studies indicate that SOCS2 deletion promotes the spontaneous development of intestinal tumors driven by mutations in the adenomatous polyposis coli/beta-catenin pathway and activates AP-1. Therefore, reduced expression or epigenetic silencing of SOCS2 may serve as a useful biomarker for colorectal cancer risk.

Collaboration


Dive into the James G. Simmons's collaboration.

Top Co-Authors

Avatar

P. Kay Lund

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Pauline Kay Lund

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jolanta B. Pucilowska

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Brooks Scull

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Carmen Z. Michaylira

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kirk K. McNaughton

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Nicole M. Ramocki

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Arianne L. Theiss

Baylor University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denise M. Ney

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge