Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James G. Wallis is active.

Publication


Featured researches published by James G. Wallis.


Trends in Biochemical Sciences | 2002

Polyunsaturated fatty acid synthesis: what will they think of next?

James G. Wallis; Jennifer L. Watts; John Browse

Polyunsaturated fatty acids have crucial roles in membrane biology and signaling processes in most living organisms. However, it is only recently that molecular genetic approaches have allowed detailed studies of the enzymes involved in their synthesis. New evidence has revealed a range of pathways in different organisms. These include a complex sequence for synthesis of docosahexaenoic acid (22:6) in mammals and a polyketide synthase pathway in marine microbes.


Progress in Lipid Research | 2002

Mutants of Arabidopsis reveal many roles for membrane lipids.

James G. Wallis; John Browse

Polyunsaturated acyl lipids constitute approximately 50% of the hydrophobic membrane barriers that delineate the compartments of cells. The composition of these lipids is critically important for many membrane functions and, thus, for proper growth and development of all living organisms. In the model plant Arabidopsis, the isolation of mutants with altered lipid compositions has facilitated biochemical and molecular approaches to understanding lipid metabolism and membrane biogenesis. Just as importantly, the availability of a series of plant lines with specific changes in membrane lipids have provided a new resource to study the structural and adaptive roles of lipids. Now, the sequencing of the Arabidopsis genome, and the development of reverse-genetics approaches provide the tools needed to make additional discoveries about the relationships between lipid structure and membrane function in plant cells.


Plant Molecular Biology | 1997

Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures

James G. Wallis; Hongyu Wang; Daniel J. Guerra

A synthetic antifreeze protein gene was expressed in plants and reduced electrolyte leakage from the leaves at freezing temperatures. The synthetic AFP was expressed as a fusion to a signal peptide, directing it to the extracytoplasmic space where ice crystallization first occurs. The gene was introduced to Solanum tuberosum L. cv. Russet Burbank by Agrobacterium-mediated transformation. Transformants were identified by PCR screening and expression of the introduced protein was verified by immunoblot. Electrolyte-release analysis of transgenic plant leaves established a correlation between the level of transgenic protein expression and degree of tolerance to freezing. This is the first identification of a phenotype associated with antifreeze protein expression in plant tissue.


Plant Journal | 2010

Lipid biochemists salute the genome

James G. Wallis; John Browse

The biochemistry of plant metabolic pathways has been studied for many generations; nevertheless, numerous new enzymes and metabolic products have been discovered in the last 5-10 years. More importantly, many intriguing questions remain in all areas of metabolism. In this review, we consider these issues with respect to several pathways of lipid metabolism and the contributions made by the Arabidopsis genome sequence and the tools that it has spawned. These tools have allowed identification of enzymes and transporters required for the mobilization of seed storage lipids, as well as transporters that facilitate movement of lipids from the endoplasmic reticulum to the chloroplast in green leaf cells. Genomic tools were important in recognition of novel components of the cutin and suberin polymers that form water-impermeable barriers in plants. The waxes that also contribute to these barriers are exported from cells of the epidermis by transporters that are now being identified. Biochemical and genetic knowledge from yeast and animals has permitted successful homology-based searches of the Arabidopsis genome for genes encoding enzymes involved in the elongation of fatty acids and the synthesis of sphingolipids. Knowledge of the genome has identified novel enzymes for the biosynthesis of the seed storage lipid, triacylglycerol, and provided a refined understanding of how the pathways of fatty acid and triacylglycerol synthesis are integrated into overall carbon metabolism in developing seeds.


Journal of Experimental Botany | 2012

Arabidopsis mutants reveal that short- and long-term thermotolerance have different requirements for trienoic fatty acids

Jean-Marc Routaboul; Chris Skidmore; James G. Wallis; John Browse

The photosynthetic thylakoid has the highest level of lipid unsaturation of any membrane. In Arabidopsis thaliana plants grown at 22°C, approximately 70% of the thylakoid fatty acids are trienoic – they have three double bonds. In Arabidopsis, and other species, the levels of trienoic fatty acids decline substantially at higher temperatures. Several genetic studies indicate that reduced unsaturation improves photosynthetic function and plant survival at high temperatures. Here, these studies are extended using the Arabidopsis triple mutant, fad3-2 fad7-2 fad8 that contains no detectable trienoic fatty acids. In the short-term, fluorescence analyses and electron-transport assays indicated that photosynthetic functions in this mutant are more thermotolerant than the wild type. However, long-term photosynthesis, growth, and survival of plants were all compromised in the triple mutant at high temperature. The fad3-2 fad7-2 fad8 mutant is deficient in jasmonate synthesis and this hormone has been shown to mediate some aspects of thermotolerance; however, additional experiments demonstrated that a lack of jasmonate was not a major factor in the death of triple-mutant plants at high temperature. The results indicate that long-term thermotolerance requires a basal level of trienoic fatty acids. Thus, the success of genetic and molecular approaches to increase thermotolerance by reducing membrane unsaturation will be limited by countervailing effects that compromise essential plant functions at elevated temperatures.


Journal of Experimental Botany | 2015

Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol

Jose Aznar-Moreno; Peter Denolf; Katrien Van Audenhove; Stefanie De Bodt; Steven Engelen; Deirdre Fahy; James G. Wallis; John Browse

Highlight Fatty acid composition determines oil qualities. Not only the selectivity of BnDGAT1 enzymes, but also the concentration of the fatty acid substrates, determines the oil composition in Brassica napus seeds.


The Plant Cell | 2013

Cytochrome b5 Reductase Encoded by CBR1 Is Essential for a Functional Male Gametophyte in Arabidopsis

Laura L. Wayne; James G. Wallis; Rajesh Kumar; Jonathan E. Markham; John Browse

This work shows that cytochrome b5 reductase is essential for correct pollen function and seed maturation. The results indicate that during most of the plant life cycle, P450 reductase also reduces cytochrome b5, but this activity is evidently not sufficient to support essential reactions in pollen and seed tissues. In all eukaryotes, NADH:cytochrome b5 reductase provides electrons, via cytochrome b5, for a range of biochemical reactions in cellular metabolism, including for fatty acid desaturation in the endoplasmic reticulum. Studies in mammals, yeast, and in vitro plant systems have shown that cytochrome b5 can, at least in some circumstances, also accept electrons from NADPH:cytochrome P450 reductase, potentially allowing for redundancy in reductase function. Here, we report characterization of three T-DNA insertional mutants of the gene encoding cytochrome b5 reductase in Arabidopsis thaliana, CBR1. The progeny of plants heterozygous for the cbr1-2 allele segregated 6% homozygous mutants, while cbr1-3 and cbr1-4 heterozygotes segregated 1:1 heterozygous:wild type, indicating a gametophyte defect. Homozygous cbr1-2 seeds were deformed and required Suc for successful germination and seedling establishment. Vegetative growth of cbr1-2 plants was relatively normal, and they produced abundant flowers, but very few seeds. The pollen produced in cbr1-2 anthers was viable, but when germinated on cbr1-2 or wild-type stigmas, most of the resulting pollen tubes did not extend into the transmitting tract, resulting in a very low frequency of fertilization. These results indicate that cytochrome b5 reductase is not essential during vegetative growth but is required for correct pollen function and seed maturation.


Plant Physiology | 2015

Mutations in the Prokaryotic Pathway Rescue the fatty acid biosynthesis1 Mutant in the Cold

Jinpeng Gao; James G. Wallis; John Browse

Fatty acid biosynthesis mutants are temperature sensitive, but mutations in any of five genes of the prokaryotic lipid synthesis pathway suppress this low-temperature phenotype and rescue cold tolerance. The Arabidopsis (Arabidopsis thaliana) fatty acid biosynthesis1 (fab1) mutant has increased levels of the saturated fatty acid 16:0 due to decreased activity of 3-ketoacyl-acyl carrier protein (ACP) synthase II. In fab1 leaves, phosphatidylglycerol, the major chloroplast phospholipid, contains up to 45% high-melting-point molecular species (molecules that contain only 16:0, 16:1-trans, and 18:0), a trait associated with chilling-sensitive plants, compared with less than 10% in wild-type Arabidopsis. Although they do not exhibit typical chilling sensitivity, when exposed to low temperatures (2°C–6°C) for long periods, fab1 plants do suffer collapse of photosynthesis, degradation of chloroplasts, and eventually death. A screen for suppressors of this low-temperature phenotype has identified 11 lines, some of which contain additional alterations in leaf-lipid composition relative to fab1. Here, we report the identification of two suppressor mutations, one in act1, which encodes the chloroplast acyl-ACP:glycerol-3-phosphate acyltransferase, and one in lpat1, which encodes the chloroplast acyl-ACP:lysophosphatidic acid acyltransferase. These enzymes catalyze the first two steps of the prokaryotic pathway for glycerolipid synthesis, so we investigated whether other mutations in this pathway would rescue the fab1 phenotype. Both the gly1 mutation, which reduces glycerol-3-phosphate supply to the prokaryotic pathway, and fad6, which is deficient in the chloroplast 16:1/18:1 fatty acyl desaturase, were discovered to be suppressors. Analyses of leaf-lipid compositions revealed that mutations at all four of the suppressor loci result in reductions in the proportion of high-melting-point molecular species of phosphatidylglycerol relative to fab1. We conclude that these reductions are likely the basis for the suppressor phenotypes.


Eukaryotic Cell | 2013

Cytochrome b5 Coexpression Increases Tetrahymena thermophila Δ6 Fatty Acid Desaturase Activity in Saccharomyces cerevisiae

Jeremy L. Dahmen; Rebecca Olsen; Deirdre Fahy; James G. Wallis; John Browse

ABSTRACT Very-long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic, and docosahexaenoic acids, are important to the physiology of many microorganisms and metazoans and are vital to human development and health. The production of these and related fatty acids depends on Δ6 desaturases, the final components of an electron transfer chain that introduces double bonds into 18-carbon fatty acid chains. When a Δ6 desaturase identified from the ciliated protist Tetrahymena thermophila was expressed in Saccharomyces cerevisiae cultures supplemented with the 18:2Δ9,12 substrate, only 4% of the incorporated substrate was desaturated. Cytochrome b5 protein sequences identified from the genome of T. thermophila included one sequence with two conserved cytochrome b5 domains. Desaturation by the Δ6 enzyme increased as much as 10-fold when T. thermophila cytochrome b5s were coexpressed with the desaturase. Coexpression of a cytochrome b5 from Arabidopsis thaliana with the Δ6 enzyme also increased desaturation. A split ubiquitin growth assay indicated that the strength of interaction between cytochrome b5 proteins and the desaturase plays a vital role in fatty acid desaturase activity, illustrating the importance of protein-protein interactions in this enzyme activity.


Plant Biotechnology Journal | 2013

Reducing saturated fatty acids in Arabidopsis seeds by expression of a Caenorhabditis elegans 16:0–specific desaturase

Deirdre Fahy; Barbara Scheer; James G. Wallis; John Browse

Plant oilseeds are a major source of nutritional oils. Their fatty acid composition, especially the proportion of saturated and unsaturated fatty acids, has important effects on human health. Because intake of saturated fats is correlated with the incidence of cardiovascular disease and diabetes, a goal of metabolic engineering is to develop oils low in saturated fatty acids. Palmitic acid (16:0) is the most abundant saturated fatty acid in the seeds of many oilseed crops and in Arabidopsis thaliana. We expressed FAT-5, a membrane-bound desaturase cloned from Caenorhabditis elegans, in Arabidopsis using a strong seed-specific promoter. The FAT-5 enzyme is highly specific to 16:0 as substrate, converting it to 16:1∆9; expression of fat-5 reduced the 16:0 content of the seed by two-thirds. Decreased 16:0 and elevated 16:1 levels were evident both in the storage and membrane lipids of seeds. Regiochemical analysis of phosphatidylcholine showed that 16:1 was distributed at both positions on the glycerolipid backbone, unlike 16:0, which is predominately found at the sn-1 position. Seeds from a plant line homozygous for FAT-5 expression were comparable to wild type with respect to seed set and germination, while oil content and weight were somewhat reduced. These experiments demonstrate that targeted heterologous expression of a desaturase in oilseeds can reduce the level of saturated fatty acids in the oil, significantly improving its nutritional value.

Collaboration


Dive into the James G. Wallis's collaboration.

Top Co-Authors

Avatar

John Browse

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Chaofu Lu

Montana State University

View shared research outputs
Top Co-Authors

Avatar

Deirdre Fahy

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Watts

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Chris Skidmore

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Daniel Lunn

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Jinpeng Gao

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Shuangyi Bai

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Rajesh Kumar

Indian Council of Agricultural Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge