Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Gillard is active.

Publication


Featured researches published by James Gillard.


Journal of Medicinal Chemistry | 2013

Compound Aggregation in Drug Discovery: Implementing a Practical NMR Assay for Medicinal Chemists

Steven R. LaPlante; Rebekah Carson; James Gillard; René Coulombe; Sylvain Bordeleau; Pierre R. Bonneau; Michael Little; Jeff O’Meara; Pierre L. Beaulieu

The pharmaceutical industry has recognized that many drug-like molecules can self-aggregate in aqueous media and have physicochemical properties that skew experimental results and decisions. Herein, we introduce the use of a simple NMR strategy for detecting the formation of aggregates using dilution experiments that can be performed on equipment prevalent in most synthetic chemistry departments. We show that (1)H NMR resonances are sensitive to large molecular-size entities and to smaller multimers and mixtures of species. Practical details are provided for sample preparation and for determining the concentrations of single molecule, aggregate entities, and precipitate. The critical concentrations above which aggregation begins can be found and were corroborated by comparisons with light scattering techniques. Disaggregation can also be monitored using detergents. This NMR assay should serve as a practical and readily available tool for medicinal chemists to better characterize how their compounds behave in aqueous media and influence drug design decisions.


Journal of Medicinal Chemistry | 2014

Enantiomeric Atropisomers Inhibit HCV Polymerase and/or HIV Matrix: Characterizing Hindered Bond Rotations and Target Selectivity.

Steven R. LaPlante; Pat Forgione; Colette Boucher; René Coulombe; James Gillard; Oliver Hucke; Araz Jakalian; Marc-André Joly; George Kukolj; Christopher T. Lemke; Robert S. McCollum; Steve Titolo; Pierre L. Beaulieu; Timothy Stammers

An anthranilic acid series of allosteric thumb pocket 2 HCV NS5B polymerase inhibitors exhibited hindered rotation along a covalent bond axis, and the existence of atropisomer chirality was confirmed by NMR, HPLC analysis on chiral supports, and computational studies. A thorough understanding of the concerted rotational properties and the influence exerted by substituents involved in this steric phenomenon was attained through biophysical studies on a series of truncated analogues. The racemization half-life of a compound within this series was determined to be 69 min, which was consistent with a class 2 atropisomer (intermediate conformational exchange). It was further found by X-ray crystallography that one enantiomer of a compound bound to the intended HCV NS5B polymerase target whereas the mirror image atropisomer was able to bind to an unrelated HIV matrix target. Analogues were then identified that selectively inhibited the former. These studies highlight that atropisomer chirality can lead to distinct entities with specific properties, and the phenomenon of atropisomerism in drug discovery should be evaluated and appropriately managed.


Bioorganic & Medicinal Chemistry Letters | 2010

N-Acetamideindolecarboxylic acid allosteric ‘finger-loop’ inhibitors of the hepatitis C virus NS5B polymerase: discovery and initial optimization studies

Pierre L. Beaulieu; Eric Jolicoeur; James Gillard; Christian Brochu; René Coulombe; Nathalie Dansereau; Jianmin Duan; Michel Garneau; Araz Jakalian; Peter Kühn; Lisette Lagacé; Steven R. LaPlante; Ginette McKercher; Stéphane Perrault; Martin Poirier; Marc-André Poupart; Timothy Stammers; Louise Thauvette; Bounkham Thavonekham; George Kukolj

SAR studies at the N(1)-position of allosteric indole-based HCV NS5B inhibitors has led to the discovery of acetamide derivatives with good cellular potency in subgenomic replicons (EC(50) <200 nM). This class of inhibitors displayed improved physicochemical properties and favorable ADME-PK profiles over previously described analogs in this class.


Journal of Medicinal Chemistry | 2014

Conformation-Based Restrictions and Scaffold Replacements in the Design of Hepatitis C Virus Polymerase Inhibitors: Discovery of Deleobuvir (BI 207127)

Steven R. LaPlante; Michael Bös; Christian Brochu; Catherine Chabot; René Coulombe; James Gillard; Araz Jakalian; Martin Poirier; Jean Rancourt; Timothy Stammers; Bounkham Thavonekham; Pierre L. Beaulieu; George Kukolj; Youla S. Tsantrizos

Conformational restrictions of flexible torsion angles were used to guide the identification of new chemotypes of HCV NS5B inhibitors. Sites for rigidification were based on an acquired conformational understanding of compound binding requirements and the roles of substituents in the free and bound states. Chemical bioisosteres of amide bonds were explored to improve cell-based potency. Examples are shown, including the design concept that led to the discovery of the phase III clinical candidate deleobuvir (BI 207127). The structure-based strategies employed have general utility in drug design.


Bioorganic & Medicinal Chemistry Letters | 2011

From benzimidazole to indole-5-carboxamide Thumb Pocket I inhibitors of HCV NS5B polymerase. Part 1: Indole C-2 SAR and discovery of diamide derivatives with nanomolar potency in cell-based subgenomic replicons

Pierre L. Beaulieu; James Gillard; Eric Jolicoeur; Jianmin Duan; Michel Garneau; George Kukolj; Marc-André Poupart

Replacement of the benzimidazole core of allosteric Thumb Pocket 1 HCV NS5B finger loop inhibitors by more lipophilic indole derivatives provided up to 30-fold potency improvements in cell-based subgenomic replicon assays. Optimization of C-2 substitution on the indole core led to the identification of analogs with EC(50)<100 nM and modulated the pharmacokinetic properties of the inhibitors based on preliminary data from in vitro ADME profiles and in vivo rat PK.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of benzimidazole-diamide finger loop (Thumb Pocket I) allosteric inhibitors of HCV NS5B polymerase: Implementing parallel synthesis for rapid linker optimization

Sylvie Goulet; Marc-André Poupart; James Gillard; Martin Poirier; George Kukolj; Pierre L. Beaulieu

Previously described SAR of benzimidazole-based non-nucleoside finger loop (Thumb Pocket I) inhibitors of HCV NS5B polymerase was expanded. Prospecting studies using parallel synthesis techniques allowed the rapid identification of novel cinnamic acid right-hand sides that provide renewed opportunities for further optimization of these inhibitors. Novel diamide derivatives such as 44 exhibited comparable potency (enzymatic and cell-based HCV replicon) as previously described tryptophan-based inhibitors but physicochemical properties (e.g., aqueous solubility and lipophilicity) have been improved, resulting in molecules with reduced off-target liabilities (CYP inhibition) and increased metabolic stability.


Journal of Medicinal Chemistry | 2014

Molecular Dynamics Simulations and Structure-Based Rational Design Lead to Allosteric HCV NS5B Polymerase Thumb Pocket 2 Inhibitor with Picomolar Cellular Replicon Potency.

Oliver Hucke; René Coulombe; Pierre R. Bonneau; M Bertrand-Laperle; Christian Brochu; James Gillard; Marc-André Joly; Serge Landry; O Lepage; Montse Llinas-Brunet; M Pesant; Martin Poirier; Ginette McKercher; Martin Marquis; George Kukolj; Pierre L. Beaulieu; Timothy Stammers

The design and preliminary SAR of a new series of 1H-quinazolin-4-one (QAZ) allosteric HCV NS5B thumb pocket 2 (TP-2) inhibitors was recently reported. To support optimization efforts, a molecular dynamics (MD) based modeling workflow was implemented, providing information on QAZ binding interactions with NS5B. This approach predicted a small but critical ligand-binding induced movement of a protein backbone region which increases the pocket size and improves access to the backbone carbonyl groups of Val 494 and Pro 495. This localized backbone shift was consistent with key SAR results and was subsequently confirmed by X-ray crystallography. The MD protocol guided the design of inhibitors, exploiting novel H-bond interactions with the two backbone carbonyl groups, leading to the first thumb pocket 2 NS5B inhibitor with picomolar antiviral potency in genotype (gt) 1a and 1b replicons (EC50 = 120 and 110 pM, respectively) and with EC50 ≤ 80 nM against gt 2-6.


Bioorganic & Medicinal Chemistry Letters | 2013

N- versus O-alkylation: Utilizing NMR methods to establish reliable primary structure determinations for drug discovery.

Steven R. LaPlante; François Bilodeau; James Gillard; Jeff O’Meara; René Coulombe

A classic synthetic issue that remains unresolved is the reaction that involves the control of N- versus O-alkylation of ambident anions. This common chemical transformation is important for medicinal chemists, who require predictable and reliable protocols for the rapid synthesis of inhibitors. The uncertainty of whether the product(s) are N- and/or O-alkylated is common and can be costly if undetermined. Herein, we report an NMR-based strategy that focuses on distinguishing inhibitors and intermediates that are N- or O-alkylated. The NMR strategy involves three independent and complementary methods. However, any combination of two of the methods can be reliable if the third were compromised due to resonance overlap or other issues. The timely nature of these methods (HSQC/HMQC, HMBC. ROESY, and (13)C shift predictions) allows for contemporaneous determination of regioselective alkylation as needed during the optimization of synthetic routes.


Bioorganic & Medicinal Chemistry Letters | 2011

Indole 5-carboxamide Thumb Pocket I inhibitors of HCV NS5B polymerase with nanomolar potency in cell-based subgenomic replicons (part 2): Central amino acid linker and right-hand-side SAR studies

Pierre L. Beaulieu; Catherine Chabot; Jianmin Duan; Michel Garneau; James Gillard; Eric Jolicoeur; Martin Poirier; Marc-André Poupart; Timothy Stammers; George Kukolj; Youla S. Tsantrizos

In this part 2, new indole 5-carboxamide Thumb Pocket 1 inhibitors of HCV NS5B polymerase are described. Structure-activity relationships (SAR) were explored at the central amino acid linker position and the right-hand-side of the molecule in an attempt to identify molecules with a balanced overall profile of potency (EC(50)<100 nM), physicochemical properties and ADME characteristics.


Journal of Medicinal Chemistry | 2014

Discovery of BI 207524, an indole diamide NS5B thumb pocket 1 inhibitor with improved potency for the potential treatment of chronic hepatitis C virus infection.

Pierre L. Beaulieu; Paul C. Anderson; Richard C. Bethell; Michael Bös; Yves Bousquet; Christian Brochu; Michael G. Cordingley; Gulrez Fazal; Michel Garneau; James Gillard; Stephen H. Kawai; Martin Marquis; Ginette McKercher; Marc-André Poupart; Timothy Stammers; Bounkham Thavonekham; Dominik Wernic; Jianmin Duan; George Kukolj

The development of interferon-free regimens for the treatment of chronic HCV infection constitutes a preferred option that is expected in the future to provide patients with improved efficacy, better tolerability, and reduced risk for emergence of drug-resistant virus. We have pursued non-nucleoside NS5B polymerase allosteric inhibitors as combination partners with other direct acting antivirals (DAAs) having a complementary mechanism of action. Herein, we describe the discovery of a potent follow-up compound (BI 207524, 27) to the first thumb pocket 1 NS5B inhibitor to demonstrate antiviral activity in genotype 1 HCV infected patients, BILB 1941 (1). Cell-based replicon potency was significantly improved through electronic modulation of the pKa of the carboxylic acid function of the lead molecule. Subsequent ADME-PK optimization lead to 27, a predicted low clearance compound in man. The preclinical profile of inhibitor 27 is discussed, as well as the identification of a genotoxic metabolite that led to the discontinuation of the development of this compound.

Collaboration


Dive into the James Gillard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge