Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James H. Cane is active.

Publication


Featured researches published by James H. Cane.


Proceedings of the Royal Society of London B: Biological Sciences | 2007

Importance of pollinators in changing landscapes for world crops

Alexandra-Maria Klein; Bernard E. Vaissière; James H. Cane; Ingolf Steffan-Dewenter; Saul A. Cunningham; Claire Kremen; Teja Tscharntke

The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.


Plant Systematics and Evolution | 2000

Pollen nutritional content and digestibility for animals.

T. J. Roulston; James H. Cane

This paper reviews the literature concerning digestion and nutrient content of pollen. Four topics are addressed in detail: 1) The mechanism of pollen digestion by animals; 2) The efficiency of mechanical and digestive removal of pollen content by various animals; 3) Range and taxonomic distribution of pollen nutrients, and 4) Adaptive hypotheses proposed to associate pollen chemistry with pollinator reward. Studies on the mechanism(s) of pollen digestion remain inconclusive, but suggest that differences in digestibility among pollen types may reflect differences in pollen wall porosity, thickness, and composition. Although hummingbirds reportedly digest pollen very poorly, most animals studied, including those that do not regularly consume pollen, can digest 50–100% of ingested grains. Overlooked and recent research of pollen protein content shows that pollen grains may contain over 60% protein, double the amount cited in some studies of pollen-feeding animals. Adaptive hypotheses that associate pollen starch and pollen caloric content with pollinator reward remain unsubstantiated when critically viewed through the lens of phylogeny.


Ecological Monographs | 2000

What governs protein content of pollen: Pollinator preferences, pollen-pistil interactions, or phylogeny?

T'ai Roulston; James H. Cane; Stephen L. Buchmann

Pollen ranges from 2.5% to 61% protein content. Most pollen proteins are likely to be enzymes that function during pollen tube growth and subsequent fertilization, but the vast range of protein quantity may not reflect only pollen–pistil interactions. Because numerous vertebrate and invertebrate floral visitors consume pollen for protein, protein content may influence floral host choice. Additionally, many floral visitors pollinate their host plants. If protein content influences pollinator visitation, then pollinators are hypothesized to select for increased protein content of host plants. We analyzed or gleaned from the literature crude pollen protein concentrations of 377 plant species from 93 plant families. Using this database, we compared pollen protein concentration with (1) pollination mode, (2) pollen collection by bees, and (3) distance from stigma to ovule, after accounting for phylogeny through paired phylogenetic comparisons and a nested ANOVA including taxonomic rank. We found that pollen pr...


Ecological Applications | 2006

Complex Responses Within A Desert Bee Guild (Hymenoptera: Apiformes) To Urban Habitat Fragmentation

James H. Cane; Robert L. Minckley; Linda Kervin; T'ai H. Roulston; Neal M. Williams

Urbanization within the Tucson Basin of Arizona during the past 50+ years has fragmented the original desert scrub into patches of different sizes and ages. These remnant patches and the surrounding desert are dominated by Larrea tridentata (creosote bush), a long-lived shrub whose flowers are visited by > 120 native bee species across its range. Twenty-one of these bee species restrict their pollen foraging to L. tridentata. To evaluate the response of this bee fauna to fragmentation, we compared species incidence and abundance patterns for the bee guild visiting L. tridentata at 59 habitat fragments of known size (0.002-5 ha) and age (up to 70 years), and in adjacent desert. The 62 bee species caught during this study responded to fragmentation heterogeneously and not in direct relation to their abundance or incidence in undisturbed desert. Few species found outside the city were entirely absent from urban fragments. Species of ground-nesting L. tridentata specialists were underrepresented in smaller fragments and less abundant in the smaller and older fragments. In contrast, cavity-nesting bees (including one L. tridentata specialist) were overrepresented in the habitat fragments, probably due to enhanced nesting opportunities available in the urban matrix. Small-bodied bee species were no more likely than larger bodied species to be absent from the smaller fragments. The introduced European honey bee, Apis mellifera, was a minor faunal element at > 90% of the fragments and exerted little if any influence on the response of native bee species to fragmentation. Overall, bee response to urban habitat fragmentation was best predicted by ecological traits associated with nesting and dietary breadth. Had species been treated as individual units in the analyses, or pooled together into one analysis, these response patterns may not have been apparent. Pollination interactions with this floral host are probably not adversely affected in this system because of its longevity and ability to attract diverse pollinators but will demand careful further study to understand.


Conservation Ecology | 2001

Habitat Fragmentation and Native Bees: a Premature Verdict?

James H. Cane

Few studies directly address the consequences of habitat fragmentation for communities of pollinating insects, particularly for the key pollinator group, bees (Hymenoptera: Apiformes). Bees typically live in habitats where nesting substrates and bloom are patchily distributed and spatially dissociated. Bee studies have all defined habitat fragments as remnant patches of floral hosts or forests, overlooking the nesting needs of bees. Several authors conclude that habitat fragmentation is broadly deleterious, but their own data show that some native species proliferate in sampled fragments. Other studies report greater densities and comparable diversities of native bees at flowers in some fragment size classes relative to undisrupted habitats, but find dramatic shifts in species composition. Insightful studies of habitat fragmentation and bees will consider fragmentation, alteration, and loss of nesting habitats, not just patches of forage plants, as well as the permeability of the surrounding matrix to interpatch movement. Inasmuch as the floral associations and nesting habits of bees are often attributes of species or subgenera, ecological interpretations hinge on authoritative identifications. Study designs must accommodate statistical problems associated with bee community samples, especially non-normal data and frequent zero values. The spatial scale of fragmentation must be appreciated: bees of medium body size can regularly fly 1–2 km from nest site to forage patch. Overall, evidence for prolonged persistence of substantial diversity and http://www.ecologyandsociety.org/vol5/iss1/art3/ (1 of 10) [9/5/2008 11:01:43 AM] Conservation Ecology: Habitat Fragmentation and Native Bees: A Premature Verdict? abundances of native bee communities in habitat fragments of modest size promises practical solutions for maintaining bee populations. Provided that reserve selection, design, and management can address the foraging and nesting needs of bees, networks of even small reserves may hold hope for sustaining considerable pollinator diversity and the ecological services pollinators provide.


Annual Review of Entomology | 2011

The alfalfa leafcutting bee, Megachile rotundata: the world's most intensively managed solitary bee.

Theresa L. Pitts-Singer; James H. Cane

The alfalfa leafcutting bee (ALCB), Megachile rotundata F. (Megachildae), was accidentally introduced into the United States by the 1940s. Nest management of this Eurasian nonsocial pollinator transformed the alfalfa seed industry in North America, tripling seed production. The most common ALCB management practice is the loose cell system, in which cocooned bees are removed from nesting cavities for cleaning and storage. Traits of ALCBs that favored their commercialization include gregarious nesting; use of leaves for lining nests; ready acceptance of affordable, mass-produced nesting materials; alfalfa pollination efficacy; and emergence synchrony with alfalfa bloom. The ALCB became a commercial success because much of its natural history was understood, targeted research was pursued, and producer ingenuity was encouraged. The ALCB presents a model system for commercializing other solitary bees and for advancing new testable hypotheses in diverse biological disciplines.


Oecologia | 1989

Bees assess pollen returns while sonicating Solanum flowers

Stephen L. Buchmann; James H. Cane

SummaryCan bees accurately gauge accumulating bodily pollen as they harvest pollen from flowers? Several recent reports conclude that bees fail to assess pollen harvest rates when foraging for nectar and pollen. A native nightshade (Solanum elaeagnifolium Cavanilles) that is visited exclusively for pollen by both solitary and social bees (eg. Ptiloglossa and Bombus) was studied in SE Arizona and SW New Mexico. The flowers have no nectaries. Two experiments were deployed that eliminated “pollen feedback” to the bees by experimentally manipulating flowers prior to bee visits. The two methods were 1) plugging poricidal anthers with glue and 2) emptying anthers of pollen by vibration prior to bee visitation. Both experiments demonstrated that bees directly assess pollen harvest on a flower-by-flower basis, and significantly tailor their handling times, number of vibratile buzzes per flower and grooming bouts according to the ongoing harvest on a given flower. In comparison to experimental flowers, floral handling times were extended for both Bombus and Ptiloglossa on virgin flowers. Greater numbers of intrafloral buzzes and numbers of times bees groomed pollen and packed it into their scopae while still on the flower were also more frequent at virgin versus experimental flowers. Flowers with glued andreocia received uniformly brief visits from Bombus and Ptiloglossa with fewer sonications and virtually no bouts of grooming. Curtailed handling with few buzzes and grooms also characterized visits to our manually harvested flowers wherein pollen was artificially depleted. Sonicating bees respond positively to pollen-feedback while harvesting from individual flowers, and therefore we expect them to adjust their harvesting tempo according to the currency of available pollen (standing crop) within Solanum floral patches.


Evolutionary Ecology | 2002

The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes)

T'ai H. Roulston; James H. Cane

Adult bees and wasps provide all the food their offspring require to grow from egg to adult. For a given diet, offspring body size generally increases with an increase in the amount of food consumed as a larva, but the extent to which body size is influenced by the type of food consumed is poorly known. Pollen ranges from 2–60% protein among plant species, and bees are extremely efficient at assimilating nitrogen; therefore, it seems likely that either parent bees adjust the size of larval provisions to compensate for differences in pollen protein concentration or bee offspring attain different body size depending on the pollen type(s) consumed as a larva. We presented the generalist sweat bee Lasioglossum zephyrum with pollen diets that differed in protein content and monitored offspring body size during two experiments. In a protein supplementation experiment, diets ranged from 20–66% protein and consisted of Typha pollen amended with soy protein. On a pollen/soy diet, offspring body size increased 25% with a shift from 20–37% protein, but did not increase further at greater protein concentrations. In a multiple pollen experiment, pollen diets ranged from 20–39% protein and consisted of eight pollens that differed naturally in protein concentration. The largest offspring arose from the most protein-rich pollens, whereas much smaller bees developed on protein-poor pollens. Provision size only predicted offspring size when pollen type, and therefore protein quantity, was considered. Adult foragers did not adjust provision size to compensate for pollen protein. Therefore, offspring body size appears to result from a combination of controlled (provision size) and uncontrolled (pollen quality) factors that arise out of bee foraging decisions.


Annals of The Entomological Society of America | 2007

Substrates and materials used for nesting by North American Osmia bees (Hymenoptera: Apiformes: Megachilidae)

James H. Cane; Terry Griswold; Frank D. Parker

Abstract Nesting substrates and construction materials are compared for 65 of North America’s 139 described native species of Osmia bees. Most accounts report Osmia bees nesting in preexisting cavities in dead wood or pithy stems such as elderberry (Sambucus spp.), with cell partitions and plugs made from a pulp of finely masticated leaf tissue. Mud is widely used by species constructing free-form clumps of nest cells against stone surfaces. Some Osmia bees adopt abandoned nests of other Hymenoptera, particularly those of mud dauber wasps (Sceliphron spp.) and larger ground-nesting bees (e.g., Anthophora spp.). Reports of subterranean nesting by Osmia species are uncommon but possibly under-represent the habit, because subterranean nests are obscure and likely to be scattered. Ground- or surface-nesting habits are suspected for species that are absent from intensive trap-nesting programs in their native ranges but that otherwise have been commonly taken at flowers. The range of nesting habits and materials of European species are largely comparable, although records indicate that far more European species may nest in empty snail shells.


American Journal of Botany | 2003

Dose‐response relationships between pollination and fruiting refine pollinator comparisons for cranberry (Vaccinium macrocarpon [Ericaceae])

James H. Cane; Daniel Schiffhauer

Comparisons of pollinator efficacy using pollen received on stigmas can be refined by incorporating experimental dose-response relationships for pollen deposition and fruiting responses. A range of discrete pollen doses applied to cranberry stigmas resulted in decelerating curvilinear responses for fruiting, berry size, and seed set. Minimum thresholds and maximum asymptotes bounded reproductive responses to incremental stigmatic pollen loads. Four bee species were compared for their pollination efficacies on commercial cranberries, using counts of pollen received by stigmas during single bee visits to previously virgin flowers. Differences between these bee species were found to be exaggerated when raw pollen counts were used for comparison because foragers of some species often delivered pollen in excess of that needed to maximize fruit and seed production. Sixfold differences between species in mean pollen deposition translated into 1.5-2-fold differences in predicted cranberry fruit set and size. Implications for pollen tube competition and agricultural production are discussed.

Collaboration


Dive into the James H. Cane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blair J. Sampson

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

David L. Wood

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byron Love

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Claire Kremen

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge