James H. Davenport
University of Bath
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James H. Davenport.
Journal of Symbolic Computation | 1988
James H. Davenport; Joos Heintz
We show that quantifier elimination over real closed fields can require doubly exponential space (and hence time). This is done by explicitly constructing a sequence of expressions whose length is linear in the number of quantifiers, but whose quantifier-free expression has length doubly exponential in the number of quantifiers. The results can be applied to cylindrical algebraic decomposition, showing that this can be doubly exponential. The double exponents of our lower bounds are about one fifth of the double exponents of the best-known upper bounds.
international symposium on symbolic and algebraic computation | 2007
Christopher W. Brown; James H. Davenport
This paper has two parts. In the first part we give a simple and constructive proof that quantifier elimination in real algebra is doubly exponential, even when there is only one free variable and all polynomials in the quantified input are linear. The general result is not new, but we hope the simple and explicit nature of the proof makes it interesting. The second part of the paper uses the construction of the first part to prove some results on the effects of projection order on CAD construction -- roughly that there are CAD construction problems for which one order produces a constant number of cells and another produces a doubly exponential number of cells, and that there are problems for which all orders produce a doubly exponential number of cells. The second of these results implies that there is a true singly vs. doubly exponential gap between the worst-case running times of several modern quantifier elimination algorithms and CAD-based quantifier elimination when the number of quantifier alternations is constant.
IEEE Computer Graphics and Applications | 1992
David Lavender; Adrian Bowyer; James H. Davenport; Andrew F. Wallis; John Woodwark
The definition of a Voronoi diagram is extended to arbitrary set-theoretic solid models. A method for approximating such diagrams using recursive subdivision is described. The method relies on octrees, which have been used for computing the distances between whole solid models. Two- and three-dimensional images generated using the algorithm are presented.<<ETX>>
international symposium on symbolic and algebraic computation | 2013
Russell J. Bradford; James H. Davenport; Matthew England; Scott McCallum; David J. Wilson
This article makes the key observation that when using cylindrical algebraic decomposition (CAD) to solve a problem with respect to a set of polynomials, it is not always the signs of those polynomials that are of paramount importance but rather the truth values of certain quantifier free formulae involving them. This motivates our definition of a Truth Table Invariant CAD (TTICAD). We generalise the theory of equational constraints to design an algorithm which will efficiently construct a TTICAD for a wide class of problems, producing stronger results than when using equational constraints alone. The algorithm is implemented fully in Maple and we present promising results from experimentation.
international symposium on design and implementation of symbolic computation systems | 1990
James H. Davenport; Barry M. Trager
While computer algebra systems have dealt with polynomials and rational functions with integer coefficients for many years, dealing with more general constructs from commutative algebra is a more recent problem. In this paper we explain how one system solves this problem, what types and operators it is necessary to introduce and, in short, how one can construct a computational theory of commutative algebra. Of necessity, such a theory is rather different from the conventional, non-constructive, theory. It is also somewhat different from the theories of Seidenberg [1974] and his school, who are not particularly concerned with practical questions of efficiency.
arXiv: Symbolic Computation | 2013
Russell J. Bradford; James H. Davenport; Matthew England; David J. Wilson
Cylindrical algebraic decomposition (CAD) is an important tool for the study of real algebraic geometry with many applications both within mathematics and elsewhere. It is known to have doubly exponential complexity in the number of variables in the worst case, but the actual computation time can vary greatly. It is possible to offer different formulations for a given problem leading to great differences in tractability. In this paper we suggest a new measure for CAD complexity which takes into account the real geometry of the problem. This leads to new heuristics for choosing: the variable ordering for a CAD problem, a designated equational constraint, and formulations for truth-table invariant CADs (TTICADs). We then consider the possibility of using Grobner bases to precondition TTICAD and when such formulations constitute the creation of a new problem.
ACM Sigsam Bulletin | 2000
Robert M. Corless; David J. Jeffrey; Stephen M. Watt; James H. Davenport
This paper addresses the definitions in OpenMath of the elementary functions. The original OpenMath definitions, like most other sources, simply cite [2] as the definition. We show that this is not adequate, and propose precise definitions, and explore the relationships between these definitions.In particular, we introduce the concept of a couth pair of definitions, e.g. of arcsin and arcsinh, and show that the pair arccot and arccoth can be couth.
Journal of Symbolic Computation | 2016
Russell J. Bradford; James H. Davenport; Matthew England; Scott McCallum; David J. Wilson
When using cylindrical algebraic decomposition (CAD) to solve a problem with respect to a set of polynomials, it is likely not the signs of those polynomials that are of paramount importance but rather the truth values of certain quantifier free formulae involving them. This observation motivates our article and definition of a Truth Table Invariant CAD (TTICAD).In ISSAC 2013 the current authors presented an algorithm that can efficiently and directly construct a TTICAD for a list of formulae in which each has an equational constraint. This was achieved by generalising McCallums theory of reduced projection operators. In this paper we present an extended version of our theory which can be applied to an arbitrary list of formulae, achieving savings if at least one has an equational constraint. We also explain how the theory of reduced projection operators can allow for further improvements to the lifting phase of CAD algorithms, even in the context of a single equational constraint.The algorithm is implemented fully in Maple and we present both promising results from experimentation and a complexity analysis showing the benefits of our contributions.
computer algebra in scientific computing | 2014
Russell J. Bradford; Changbo Chen; James H. Davenport; Matthew England; Marc Moreno Maza; David J. Wilson
A new algorithm to compute cylindrical algebraic decompositions (CADs) is presented, building on two recent advances. Firstly, the output is truth table invariant (a TTICAD) meaning given formulae have constant truth value on each cell of the decomposition. Secondly, the computation uses regular chains theory to first build a cylindrical decomposition of complex space (CCD) incrementally by polynomial. Significant modification of the regular chains technology was used to achieve the more sophisticated invariance criteria. Experimental results on an implementation in the RegularChains Library for Maple verify that combining these advances gives an algorithm superior to its individual components and competitive with the state of the art.
arXiv: Symbolic Computation | 2014
Zongyan Huang; Matthew England; David J. Wilson; James H. Davenport; Lawrence C. Paulson; James P. Bridge
Cylindrical algebraic decomposition(CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. When using CAD, there is often a choice for the ordering placed on the variables. This can be important, with some problems infeasible with one variable ordering but easy with another. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we use machine learning (specifically a support vector machine) to select between heuristics for choosing a variable ordering, outperforming each of the separate heuristics.