Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James H. Geiger is active.

Publication


Featured researches published by James H. Geiger.


The EMBO Journal | 2005

Crystal structure of potato tuber ADP‐glucose pyrophosphorylase

Xiangshu Jin; Miguel A. Ballicora; Jack Preiss; James H. Geiger

ADP‐glucose pyrophosphorylase catalyzes the first committed and rate‐limiting step in starch biosynthesis in plants and glycogen biosynthesis in bacteria. It is the enzymatic site for regulation of storage polysaccharide accumulation in plants and bacteria, being allosterically activated or inhibited by metabolites of energy flux. We report the first atomic resolution structure of ADP‐glucose pyrophosphorylase. Crystals of potato tuber ADP‐glucose pyrophosphorylase α subunit were grown in high concentrations of sulfate, resulting in the sulfate‐bound, allosterically inhibited form of the enzyme. The N‐terminal catalytic domain resembles a dinucleotide‐binding Rossmann fold and the C‐terminal domain adopts a left‐handed parallel β helix that is involved in cooperative allosteric regulation and a unique oligomerization. We also report structures of the enzyme in complex with ATP and ADP‐glucose. Communication between the regulator‐binding sites and the active site is both subtle and complex and involves several distinct regions of the enzyme including the N‐terminus, the glucose‐1‐phosphate‐binding site, and the ATP‐binding site. These structures provide insights into the mechanism for catalysis and allosteric regulation of the enzyme.


Journal of Biological Chemistry | 2002

The X-ray crystallographic structure of Escherichia coli branching enzyme.

Marta C. Abad; Kim Binderup; Jorge Rios-Steiner; Raghuvir K. Arni; Jack Preiss; James H. Geiger

Branching enzyme catalyzes the formation of α-1,6 branch points in either glycogen or starch. We report the 2.3-Å crystal structure of glycogen branching enzyme fromEscherichia coli. The enzyme consists of three major domains, an NH2-terminal seven-stranded β-sandwich domain, a COOH-terminal domain, and a central α/β-barrel domain containing the enzyme active site. While the central domain is similar to that of all the other amylase family enzymes, branching enzyme shares the structure of all three domains only with isoamylase. Oligosaccharide binding was modeled for branching enzyme using the enzyme-oligosaccharide complex structures of various α-amylases and cyclodextrin glucanotransferase and residues were implicated in oligosaccharide binding. While most of the oligosaccharides modeled well in the branching enzyme structure, an approximate 50° rotation between two of the glucose units was required to avoid steric clashes with Trp298 of branching enzyme. A similar rotation was observed in the mammalian α-amylase structure caused by an equivalent tryptophan residue in this structure. It appears that there are two binding modes for oligosaccharides in these structures depending on the identity and location of this aromatic residue.


Langmuir | 2011

Polymer Brush-Modified Magnetic Nanoparticles for His-Tagged Protein Purification

Fei Xu; James H. Geiger; Gregory L. Baker; Merlin L. Bruening

Growth of poly(2-hydroxyethyl methacrylate) brushes on magnetic nanoparticles and subsequent brush functionalization with nitrilotriacetate-Ni(2+) yield magnetic beads that selectively capture polyhistidine-tagged (His-tagged) protein directly from cell extracts. Transmission electron microscopy, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis, and magnetization measurements confirm and quantify the formation of the brushes on magnetic particles, and multilayer protein adsorption to these brushes results in binding capacities (220 mg BSA/g of beads and 245 mg His-tagged ubiquitin/g of beads) that are an order of magnitude greater than those of commercial magnetic beads. Moreover, the functionalized beads selectively capture His-tagged protein within 5 min. The high binding capacity and protein purity along with efficient protein capture in a short incubation time make brush-modified particles attractive for purification of recombinant proteins.


Journal of Biological Chemistry | 2003

NTP-driven Translocation by Human RNA Polymerase II

Yuri A. Nedialkov; Xue Q. Gong; Stacy Hovde; Yuki Yamaguchi; Hiroshi Handa; James H. Geiger; Honggao Yan; Zachary F. Burton

We report a “running start, two-bond” protocol to analyze elongation by human RNA polymerase II (RNAP II). In this procedure, the running start allowed us to measure rapid rates of elongation and provided detailed insight into the RNAP II mechanism. Formation of two bonds was tracked to ensure that at least one translocation event was analyzed. By using this method, RNAP II is stalled briefly at a defined template position before restoring the next NTP. Significantly, slow reaction steps are identified both before and after phosphodiester bond synthesis, and both of these steps can be highly dependent on the next templated NTP. The initial and final NTP-driven events, however, are not identical, because the slow step after chemistry, which includes translocation and pyrophosphate release, is regulated differently by elongation factors hepatitis δ antigen and transcription factor IIF. Because recovery from a stall and the processive transition from one bond to the next can be highly NTP-dependent, we conclude that translocation can be driven by the incoming substrate NTP, a model fully consistent with the RNAP II elongation complex structure.


Science | 2012

Tuning the electronic absorption of protein-embedded all-trans-retinal.

Wenjing Wang; Zahra Nossoni; Tetyana Berbasova; Camille T. Watson; Ipek Yapici; Kin Sing Stephen Lee; Chrysoula Vasileiou; James H. Geiger; Babak Borhan

Seeing the Light Rhodopsins respond to a range of electromagnetic radiation—allowing visual perception over a broad wavelength range in animals and facilitating light-driven ion transport and phototaxis in microorganisms. All rhodopsins contain an embedded retinal chromophore in which absorbance is tuned by the protein environment. To gain insight into how the protein tunes absorbance, Wang et al. (p. 1340; see the Perspective by Sakmar) turned to a smaller soluble protein, cellular retinol binding protein II. They engineered the protein to fully encapsulate and covalently bind all-trans-retinal as a Schiff base. From this starting point, they used rational mutagenesis to vary the absorption maximum over a range of more than 200 nanometers by altering the electrostatic environment of the protein-binding pocket. Opsin-based light absorption was tuned over a 200-nanometer range by rationally engineering retinol-binding protein. Protein-chromophore interactions are a central component of a wide variety of critical biological processes such as color vision and photosynthesis. To understand the fundamental elements that contribute to spectral tuning of a chromophore inside the protein cavity, we redesigned human cellular retinol binding protein II (hCRBPII) to fully encapsulate all-trans-retinal and form a covalent bond as a protonated Schiff base. This system, using rational mutagenesis designed to alter the electrostatic environment within the binding pocket of the host protein, enabled regulation of the absorption maximum of the pigment in the range of 425 to 644 nanometers. With only nine point mutations, the hCRBPII mutants induced a systematic shift in the absorption profile of all-trans-retinal of more than 200 nanometers across the visible spectrum.


Journal of Biological Chemistry | 2009

The Crystal Structures of the Open and Catalytically Competent Closed Conformation of Escherichia coli Glycogen Synthase.

Fang Sheng; Xiaofei Jia; Alejandra Yep; Jack Preiss; James H. Geiger

Escherichia coli glycogen synthase (EcGS, EC 2.4.1.21) is a retaining glycosyltransferase (GT) that transfers glucose from adenosine diphosphate glucose to a glucan chain acceptor with retention of configuration at the anomeric carbon. EcGS belongs to the GT-B structural superfamily. Here we report several EcGS x-ray structures that together shed considerable light on the structure and function of these enzymes. The structure of the wild-type enzyme bound to ADP and glucose revealed a 15.2° overall domain-domain closure and provided for the first time the structure of the catalytically active, closed conformation of a glycogen synthase. The main chain carbonyl group of His-161, Arg-300, and Lys-305 are suggested by the structure to act as critical catalytic residues in the transglycosylation. Glu-377, previously thought to be catalytic is found on the α-face of the glucose and plays an electrostatic role in the active site and as a glucose ring locator. This is also consistent with the structure of the EcGS(E377A)-ADP-HEPPSO complex where the glucose moiety is either absent or disordered in the active site.


Biomacromolecules | 2010

Protein Purification with Polymeric Affinity Membranes Containing Functionalized Poly(acid) Brushes

Parul Jain; Mukesh Kumar Vyas; James H. Geiger; Gregory L. Baker; Merlin L. Bruening

Porous nylon membranes modified with poly(acid) brushes and their derivatives can rapidly purify proteins via ion-exchange and metal-ion affinity interactions. Membranes containing poly(2-(methacryloyloxy)ethyl succinate) (poly(MES)) brushes bind 118 +/- 8 mg of lysozyme per cm(3) of membrane and facilitate purification of lysozyme from chicken egg white. Moreover, functionalization of the poly(MES) brushes with nitrilotriacetate (NTA)-Ni(2+) complexes yields membranes that bind poly(histidine)-tagged (His-tagged) ubiquitin with a capacity of 85 +/- 2 mg of protein per cm(3) of membrane. Most importantly, the membranes modified with poly(MES)-NTA-Ni(2+) allow isolation of His-tagged cellular retinaldehyde-binding protein directly from a cell extract in <10 min, and the protein purity is comparable to that achieved with commercial affinity columns. Therefore, porous nylon membranes containing functionalized poly(MES) brushes are attractive candidates for rapid, high-capacity purification of His-tagged proteins from cell extracts.


Langmuir | 2012

Formation of high-capacity protein-adsorbing membranes through simple adsorption of poly(acrylic acid)-containing films at low pH.

Somnath Bhattacharjee; Jinlan Dong; Yiding Ma; Stacy Hovde; James H. Geiger; Gregory L. Baker; Merlin L. Bruening

Layer-by-layer polyelectrolyte adsorption is a simple, convenient method for introducing ion-exchange sites in porous membranes. This study demonstrates that adsorption of poly(acrylic acid) (PAA)-containing films at pH 3 rather than pH 5 increases the protein-binding capacity of such polyelectrolyte-modified membranes 3-6-fold. The low adsorption pH generates a high density of -COOH groups that function as either ion-exchange sites or points for covalent immobilization of metal-ion complexes that selectively bind tagged proteins. When functionalized with nitrilotriacetate (NTA)-Ni(2+) complexes, membranes containing PAA/polyethylenimine (PEI)/PAA films bind 93 mg of histidine(6)-tagged (His-tagged) ubiquitin per cm(3) of membrane. Additionally these membranes isolate His-tagged COP9 signalosome complex subunit 8 from cell extracts and show >90% recovery of His-tagged ubiquitin. Although modification with polyelectrolyte films occurs by simply passing polyelectrolyte solutions through the membrane for as little as 5 min, with low-pH deposition the protein binding capacities of such membranes are as high as for membranes modified with polymer brushes and 2-3-fold higher than for commercially available immobilized metal affinity chromatography (IMAC) resins. Moreover, the buffer permeabilities of polyelectrolyte-modified membranes that bind His-tagged protein are ~30% of the corresponding permeabilities of unmodified membranes, so protein capture can occur rapidly with low-pressure drops. Even at a solution linear velocity of 570 cm/h, membranes modified with PAA/PEI/PAA exhibit a lysozyme dynamic binding capacity (capacity at 10% breakthrough) of ~40 mg/cm(3). Preliminary studies suggest that these membranes are stable under depyrogenation conditions (1 M NaOH).


Journal of the American Chemical Society | 2011

Stereochemistry and Mechanism of a Microbial Phenylalanine Aminomutase

Nishanka Dilini Ratnayake; Udayanga Wanninayake; James H. Geiger; Kevin D. Walker

The stereochemistry of a phenylalanine aminomutase (PAM) on the andrimid biosynthetic pathway in Pantoea agglomerans (Pa) is reported. PaPAM is a member of the 4-methylidene-1H-imidazol-5(4H)-one (MIO)-dependent family of catalysts and isomerizes (2S)-α-phenylalanine to (3S)-β-phenylalanine, which is the enantiomer of the product made by the mechanistically similar aminomutase TcPAM from Taxus plants. The NH(2) and pro-(3S) hydrogen groups at C(α) and C(β), respectively, of the substrate are removed and interchanged completely intramolecularly with inversion of configuration at the migration centers to form β-phenylalanine. This is a contrast to the retention of configuration mechanism followed by TcPAM.


Journal of Biological Chemistry | 2005

Genetic Perturbation of Glycolysis Results in Inhibition of de Novo Inositol Biosynthesis

Yihui Shi; Deirdre L. Vaden; Shulin Ju; Daobin Ding; James H. Geiger; Miriam L. Greenberg

In a genetic screen for Saccharomyces cerevisiae mutants hypersensitive to the inositol-depleting drugs lithium and valproate, a loss of function allele of TPI1 was identified. The TPI1 gene encodes triose phosphate isomerase, which catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate. A single mutation (N65K) in tpi1 completely abolished Tpi1p enzyme activity and led to a 30-fold increase in the intracellular DHAP concentration. The tpi1 mutant was unable to grow in the absence of inositol and exhibited the “inositol-less death” phenotype. Similarly, the pgk1 mutant, which accumulates DHAP as a result of defective conversion of 3-phosphoglyceroyl phosphate to 3-phosphoglycerate, exhibited inositol auxotrophy. DHAP as well as glyceraldehyde 3-phosphate and oxaloacetate inhibited activity of both yeast and human myo-inositol-3 phosphate synthase, the rate-limiting enzyme in de novo inositol biosynthesis. Implications for the pathology associated with TPI deficiency and responsiveness to inositol-depleting anti-bipolar drugs are discussed. This study is the first to establish a connection between perturbation of glycolysis and inhibition of de novo inositol biosynthesis.

Collaboration


Dive into the James H. Geiger's collaboration.

Top Co-Authors

Avatar

Babak Borhan

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenjing Wang

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meisam Nosrati

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stacy Hovde

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Mary Prorok

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge