Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James H. Mabe is active.

Publication


Featured researches published by James H. Mabe.


Smart Materials and Structures | 2010

Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis

Darren J. Hartl; Jesse T. Mooney; Dimitris C. Lagoudas; Frederick T. Calkins; James H. Mabe

A shape memory alloy (SMA) composition of Ni60Ti40 (wt%) was chosen for the fabrication of active beam components used as cyclic actuators and incorporated into morphing aerospace structures. The active structure is a variable-geometry chevron (VGC) designed to reduce jet engine noise in the take-off flight regime while maintaining efficiency in the cruise regime. This two-part work addresses the training, characterization and derived material properties of the new nickel-rich NiTi composition, the assessment of the actuation properties of the active beam actuator and the accurate analysis of the VGC and its subcomponents using a model calibrated from the material characterization. The second part of this two-part work focuses on the numerical modeling of the jet engine chevron application, where the end goal is the accurate prediction of the VGC actuation response. A three-dimensional (3D) thermomechanical constitutive model is used for the analysis and is calibrated using the axial testing results from part I. To best capture the material response, features of several SMA constitutive models proposed in the literature are combined to form a new model that accounts for two material behaviors not previously addressed simultaneously. These are the variation in the generated maximum actuation strain with applied stress level and a smooth strain–temperature constitutive response at the beginning and end of transformation. The accuracy of the modeling effort is assessed by comparing the analysis deflection predictions for a given loading path imposed on the VGC or its subcomponents to independently obtained experimental results consisting of photogrammetric data. For the case of full actuation of the assembled VGC, the average error in predicted centerline deflection is less than 6%.


Smart Materials and Structures | 2010

Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization

Darren J. Hartl; Dimitris C. Lagoudas; Frederick T. Calkins; James H. Mabe

A shape memory alloy (SMA) with a composition of Ni60Ti40 (wt%) was chosen for the fabrication of active beam elements intended for use as cyclic actuators and incorporated into a morphing aerospace structure. The active structure is a variable-geometry chevron (VGC) designed to reduce jet engine noise in the take-off flight regime while maintaining efficiency in the cruise regime. This two-part work addresses the training, characterization and derived material properties of the new nickel-rich composition, the assessment of the actuation properties of the active beam actuator and the accurate analysis of the VGC and its subcomponents using a model calibrated from the material characterization. The characterization performed in part I of this work was intended to provide quantitative information used to predict the response of SMA beam actuators of the same composition and with the same heat treatment history. Material in the form of plates was received and ASTM standard tensile testing coupons were fabricated and tested. To fully characterize the material response as an actuator, various thermomechanical experiments were performed. Properties such as actuation strain and transformation temperatures as a function of applied stress were of primary interest. Results from differential scanning calorimetry, monotonic tensile loading and constant stress thermal loading for the as-received, untrained material are first presented. These show lower transformation temperatures, higher elastic stiffnesses (60–90 GPa) and lower recoverable transformation strains (≈1.5%) when compared to equiatomic NiTi (Nitinol). Stabilization (training) cycles were applied to the tensile specimens and characterization tests were repeated for the stable (trained) material. The effects of specimen training included the saturation of cyclically generated irrecoverable plastic strains and a broadening of the thermal transformation hysteresis. A set of final derived material properties for this stable material is provided. Finally, the actuation response of a structural beam component composed of the same material given the same thermomechanical processing conditions was assessed by applying a constant bias load and a variable bias load as thermal actuation cycles were imposed.


Journal of Mechanical Design | 2010

Shape Memory Alloy Based Morphing Aerostructures

Frederick T. Calkins; James H. Mabe

In order to continue the current rate of improvements in aircraft performance, aircraft and components which are continuously optimized for all flight conditions, will be needed. Toward this goal morphing-capable, adaptive structures based on shape memory alloy (SMA) technology that enable component and system-level optimization at multiple flight conditions are being developed. This paper reviews five large-scale SMA based technology programs initiated by The Boeing Company. The SAMPSON smart inlet program showed that fully integrated SMA wire bundles could provide a fighter aircraft with a variable engine inlet capability. The reconfigurable rotor blade program demonstrated the ability of highly robust, controlled 55-Nitinol tube actuators to twist a rotor blade in a spin stand test to optimize rotor aerodynamic characteristics. The variable geometry chevron (VGC) program, which was the first use of 60-Nitinol for a major aerospace application, included a flight test and static engine test of the GE90-115B engine fitted with controlled morphing chevrons that reduced noise and increased engine efficiency. The deployable rotor tab employed tube actuators to deploy and retract small fences capable of significantly reducing blade-vortex interaction generated noise on a rotorcraft. Most recently, the variable geometry fan nozzle program has built on the VGC technology to demonstrate improved jet engine performance. Continued maturation of SMA technology is needed in order to develop innovative applications and support their commercialization.


Smart Structures and Materials 2006: Industrial and Commercial Applications of Smart Structures Technologies | 2006

Boeing's variable geometry chevron: morphing aerospace structures for jet noise reduction

Frederick T. Calkins; James H. Mabe; G. W. Butler

Boeing is applying cutting edge smart material actuators to the next generation morphing technologies for aircraft. This effort has led to the Variable Geometry Chevrons (VGC), which utilize compact, light weight, and robust shape memory alloy (SMA) actuators. These actuators morph the shape of chevrons on the trailing edge of a jet engine in order to optimize acoustic and performance objectives at multiple flight conditions. We have demonstrated a technical readiness level of 7 by successfully flight testing the VGCs on a Boeing 777-300ER with GE-115B engines. In this paper we describe the VGC design, development and performance during flight test. Autonomous operation of the VGCs, which did not require a control system or aircraft power, was demonstrated. A parametric study was conducted showing the influence of VGC configurations on shockcell generated cabin noise reduction during cruise. The VGC system provided a robust test vehicle to explore chevron configurations for community and shockcell noise reduction. Most importantly, the VGC concept demonstrated an exciting capability to optimize jet nozzle performance at multiple flight conditions.


aiaa ceas aeroacoustics conference | 2006

Variable Geometry Chevrons for Jet Noise Reduction

Frederick T. Calkins; G. W. Butler; James H. Mabe

Boeing is applying cutting edge smart material actuators to the next generation morphing technologies for aircraft. This effort has led to the Variable Geometry Chevrons (VGC), which utilize compact, light weight, and robust shape memory alloy (SMA) actuators. These actuators morph the shape of chevrons on a jet engine fan nozzle trailing edge in order to optimize acoustic and performance objectives at multiple flight conditions. We have completed a flight test of the VGC system on a Boeing 777-300ER with GE-115B engines. In this paper we describe the VGC design, development and performance during flight test. We demonstrated autonomous operation of the VGCs, which did not require a control system or aircraft power. The VGC concept demonstrated an exciting capability to optimize jet nozzle performance at multiple flight conditions. The VGC system provided a robust test vehicle to explore chevron configurations for community and shock-cell noise reduction. This capability was demonstrated with two examples of a parametric study which showed the influence of VGC configurations on community noise reduction and shock-cell generated cabin noise reduction during cruise.


Journal of Aircraft | 2009

Single dielectric barrier discharge plasma actuators for improved airfoil performance

James H. Mabe; Frederick T. Calkins; Benjamin Wesley; Rene Woszidlo; Lutz Taubert; I. Wygnanski

The applicability of single dialectic barrier discharge plasma actuators for use as active flow control devices, capable of enhancing the performance of airfoils, was assessed in this investigation. Measurements were carried out on two thick airfoils with simple flaps: a NACA0021 and an airfoil that is similar to those commonly used on tiltrotor aircraft. The chord length of the airfoils was approximately 0.3 and 0.25 m, respectively, and the span was approximately 0.6 m. They were both tested in the same wind tunnel with a test section of 0.6 x 1.1 m. Freestream velocities varying from 5 to 15 m/s were tested, corresponding to chord Reynolds numbers ranging between 0.8 × 10 5 and 3 × 10 5 . The lift, moment, and form drag were obtained from the pressure distributions over the airfoils surface, and the total drag was calculated from a wake survey. The range of incidence angles α varied from ―4deg <α < +20 deg and flap deflections δ f of 0 and 15 deg were tested. The location of the actuation was also altered. Two data sets are presented: one in which the actuator was placed at approximately 5 % of the chord and the other in which it was located just upstream of the flap shoulder at a chord location corresponding to about 75 %. The momentum input of the single dialectic barrier discharge plasma actuators was measured with a hot wire and was in good agreement with previously published results. The input momentum is very weak and is not sufficient to prevent separation at Reynolds numbers greater than 100,000. The single dialectic barrier discharge plasma actuators used in this study may only provide sufficient momentum to be effective at very low Reynolds numbers, such as those appropriate to micro air vehicles. Under special circumstances, their passive presence on the surface may trip the boundary layer, making it more resistant to separation, but in those cases, a proper roughness strip or vortex generators may delay separation more effectively.


Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technologies | 2003

High frequency jet nozzle actuators for jet noise reduction

G. W. Butler; David H. Reed; Frederick T. Calkins; Christopher L. Davis; James H. Mabe

Rules governing airport noise levels are becoming more restrictive and will soon affect the operation of commercial air traffic. Sound produced by jet engine exhaust, particularly during takeoff, is a major contributor to the community noise problem. The noise spectrum is broadband in character and is produced by turbulent mixing of primary, secondary, and ambient streams of the jet engine exhaust. As a potential approach to controlling the noise levels, piezoelectric bimorph actuators have been tailored to enhance the mixing of a single jet with its quiescent environment. The actuators are located at the edge of the nozzle and protrude into the exhaust stream. Several actuator configurations were considered to target two excitation frequencies, 250 Hz and 900 Hz, closely coupled to the naturally unstable frequencies of the mixing process. The piezoelectric actuators were constructed of 10 mil thick d31 poled wafer PZT-5A material bonded to either 10 or 20 mil thick spring steel substrates. Linear analytical beam models and NASTRAN finite element models were used to predict and assess the dynamic performance of the actuators. Experimental mechanical and electrical performance measurements were used to validate the models. A 3 inch diameter nozzle was fitted with actuators and tested in the Boeing Quiet Air Facility with the jet velocity varied from 50 to 1000 ft/s. Performance was evaluated using near-field and far-field acoustic data, flow visualization, and actuator health data. The overall sound pressure level produced from the 3 inch diameter jet illustrates the effect of both static and active actuators.


The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring | 2007

Full-scale Flight Tests of Aircraft Morphing Structures using SMA Actuators

James H. Mabe; Frederick T. Calkins; Robert T. Ruggeri

In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engines fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplanes structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration, electrical power, controls, data acquisition, and engine operability are discussed. Furthermore the authors layout a road map for the next stage of development of SMA aerospace actuators. A detailed look at the requirements and specifications that may define a production SMA actuator and the technology development required to meet them are presented. A path for meeting production requirements and achieving the next level of technology readiness for both autonomous and controlled SMA actuators is proposed. This path relies strongly on cross functional and organizational teaming including industry, academia, and government.


Proceedings of SPIE | 2010

Characterization of varied geometry shape memory alloy beams

Lynn Marie Gravatt; James H. Mabe; Frederick T. Calkins; Darren J. Hartl

Shape Memory Alloys (SMA) have proven to be a lightweight, low cost alternative to conventional actuators for a number of commercial applications. Future applications will require a more complex shape changes and a detailed understanding of the performance of more complex SMA actuators is required. The purpose of this study is to validate engineering models and design practices for SMA beams of various configurations for future applications. Until now, SMA actuators have been fabricated into relatively simple beam shapes. Boeing is now fabricating beams with more complicated geometries in order to determine their strength and shape memory characteristics. These more complicated shapes will allow for lighter and more compact SMA actuators as well as provide more complex shape control. Some of the geometries evaluated include vertical and horizontal I-beams, sine wave and linear wave beams, a truss, and a beam perforated with circular holes along the length. A total of six beams were tested; each was a complex shape made from 57% Nickel by weight with the remainder composed of Titanium (57NiTi). Each sample was put through a number of characterization tests. These include a 3-point bend tests to determine force/displacement properties, and thermal cycling under a range of isobaric loads to determine actuator properties. Experimental results were then compared to modeled results. Test results for one representative beam were used to calibrate a 3-D constitutive model implemented in an finite element framework. It is shown that the calibrated analysis tool is accurate in predicting the response of the other beams. Finally, the actuation work capabilities of the beams are compared using a second round of finite element anaylysis.


ASME 2006 International Mechanical Engineering Congress and Exposition | 2006

Thermomechanical Characterization and Modeling of Ni60Ti40 SMA for Actuated Chevrons

Darren J. Hartl; Brent L. Volk; Dimitris C. Lagoudas; Frederick T. Calkins; James H. Mabe

This work describes the thermomechanical characterization and preliminary FEA modeling of commercial jet engine chevrons incorporating active Shape Memory Alloy (SMA) beam components. The SMA beams, when activated, induce the necessary bending forces on the chevron structure to deflect it into the fan flow and reduce noise. The primary focus of this work is the characterization of the SMA material (Ni60Ti40 wt%) chosen to actuate these chevrons and the preliminary modeling of the active chevron system behavior. To fully understand the material and calibrate the model, various thermomechanical experiments are performed on both untrained and trained standard SMA tensile specimens. Material properties for the shape memory alloy components are derived from this tensile experimentation. By using this data, a 3-D FEA implementation of a phenomenological SMA model is calibrated and used to analyze the response of a system motivated by the active chevron. The problem modeled consists of a pre-curved SMA beam clamped firmly against a straight aluminum substrate. The model proves to be an accurate tool for predicting the mechanical response of such a system subject to defined thermal inputs.© 2006 ASME

Collaboration


Dive into the James H. Mabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ed Rosenzweig

Naval Air Systems Command

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guoqiang Li

University of Cincinnati

View shared research outputs
Researchain Logo
Decentralizing Knowledge