Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James H. Millonig is active.

Publication


Featured researches published by James H. Millonig.


American Journal of Human Genetics | 2005

Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus.

Rym Benayed; Neda Gharani; Ian T. Rossman; Vincent Mancuso; Gloria Lazar; Silky Kamdar; Shannon E. Bruse; Samuel Tischfield; Brett J. Smith; Raymond A. Zimmerman; Emanuel DiCicco-Bloom; Linda M. Brzustowicz; James H. Millonig

Our previous research involving 167 nuclear families from the Autism Genetic Resource Exchange (AGRE) demonstrated that two intronic SNPs, rs1861972 and rs1861973, in the homeodomain transcription factor gene ENGRAILED 2 (EN2) are significantly associated with autism spectrum disorder (ASD). In this study, significant replication of association for rs1861972 and rs1861973 is reported for two additional data sets: an independent set of 222 AGRE families (rs1861972-rs1861973 haplotype, P=.0016) and a separate sample of 129 National Institutes of Mental Health families (rs1861972-rs1861973 haplotype, P=.0431). Association analysis of the haplotype in the combined sample of both AGRE data sets (389 families) produced a P value of .0000033, whereas combining all three data sets (518 families) produced a P value of .00000035. Population-attributable risk calculations for the associated haplotype, performed using the entire sample of 518 families, determined that the risk allele contributes to as many as 40% of ASD cases in the general population. Linkage disequilibrium (LD) mapping with the use of polymorphisms distributed throughout the gene has shown that only intronic SNPs are in strong LD with rs1861972 and rs1861973. Resequencing and association analysis of all intronic SNPs have identified alleles associated with ASD, which makes them candidates for future functional analysis. Finally, to begin defining the function of EN2 during development, mouse En2 was ectopically expressed in cortical precursors. Fewer En2-transfected cells than controls displayed a differentiated phenotype. Together, these data provide further genetic evidence that EN2 might act as an ASD susceptibility locus, and they suggest that a risk allele that perturbs the spatial/temporal expression of EN2 could significantly alter normal brain development.


Brain Research | 2006

En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder

Michelle Cheh; James H. Millonig; Lauren M. Roselli; Xue Ming; Erin Jacobsen; Silky Kamdar; George C. Wagner

Autism spectrum disorder (ASD) is a prevalent and inheritable neurodevelopmental disorder. Recent human genetic studies are consistent with the homeobox transcription factor, ENGRAILED 2 (EN2), being an ASD susceptibility gene. En2 knockout mice (En2(-/-)) display subtle cerebellar neuropathological changes similar to what has been observed in the ASD brain. To investigate whether En2(-/-) mice displayed abnormal behavior relevant to ASD, they were monitored in tasks designed to assess social maturation as well as learning and memory. Deficits in social behavior were detected in En2(-/-) mice across maturation that included decreased play, reduced social sniffing and allogrooming, and less aggressive behavior. Deficits in two spatial learning and memory tasks were also observed. Because locomotor activity was a component of many of the behavioral tasks, this was measured at various stages of development. Locomotor activity was not compromised in the knockout. However, a more thorough analysis of motor behavior in En2(-/-) mice revealed deficits in specific motor tasks. To determine whether neurochemical changes were associated with these behavioral phenotypes, monoamine levels in specific brain regions were assessed. A cerebellar-specific increase in serotonin and its metabolite was observed. Interestingly, several reports have suggested that the serotonin pathway is affected in ASD. We conclude that En2(-/-) mice display behavioral and neurochemical changes, in addition to genetic and neuropathological changes, relevant to ASD. Therefore, these mice may be useful as an animal model of autism.


PLOS ONE | 2012

Autism-Relevant Social Abnormalities and Cognitive Deficits in Engrailed-2 Knockout Mice

Jennifer Brielmaier; Paul G. Matteson; Jill L. Silverman; Julia M. Senerth; Samantha Kelly; Matthieu Genestine; James H. Millonig; Emanuel DiCicco-Bloom; Jacqueline N. Crawley

ENGRAILED 2 (En2), a homeobox transcription factor, functions as a patterning gene in the early development and connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive, and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults, and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed. Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and cognitive deficits, including autism spectrum disorders.


International Journal of Developmental Neuroscience | 2005

Three autism candidate genes: a synthesis of human genetic analysis with other disciplines

Christopher W. Bartlett; Neda Gharani; James H. Millonig; Linda M. Brzustowicz

Autism is a particularly complex disorder when considered from virtually any methodological framework, including the perspective of human genetics. We first present a review of the genetic analysis principles relevant for discussing autism genetics research. From this body of work we highlight results from three candidate genes, REELIN (RELN), SEROTONIN TRANSPORTER (5HTT), and ENGRAILED 2 (EN2) and discuss the relevant neuroscience, molecular genetics, and statistical results that suggest involvement of these genes in autism susceptibility. As will be shown, the statistical results from genetic analysis, when considered alone, are in apparent conflict across research groups. We use these three candidate genes to illustrate different problems in synthesizing results from non‐overlapping research groups examining the same problem.


Development | 2011

Specific and integrated roles of Lmx1a, Lmx1b and Phox2a in ventral midbrain development

Qiaolin Deng; Elisabet Andersson; Eva Hedlund; Zhanna Alekseenko; Eva Coppola; Lia Panman; James H. Millonig; Jean-François Brunet; Johan Ericson; Thomas Perlmann

The severe disorders associated with a loss or dysfunction of midbrain dopamine neurons (DNs) have intensified research aimed at deciphering developmental programs controlling midbrain development. The homeodomain proteins Lmx1a and Lmx1b are important for the specification of DNs during embryogenesis, but it is unclear to what degree they may mediate redundant or specific functions. Here, we provide evidence showing that DN progenitors in the ventral midbrain can be subdivided into molecularly distinct medial and lateral domains, and these subgroups show different sensitivity to the loss of Lmx1a and Lmx1b. Lmx1a is specifically required for converting non-neuronal floor-plate cells into neuronal DN progenitors, a process that involves the establishment of Notch signaling in ventral midline cells. On the other hand, lateral DN progenitors that do not appear to originate from the floor plate are selectively ablated in Lmx1b mutants. In addition, we also reveal an unanticipated role for Lmx1b in regulating Phox2a expression and the sequential specification of ocular motor neurons (OMNs) and red nucleus neurons (RNNs) from progenitors located lateral to DNs in the midbrain. Our data therefore establish that Lmx1b influences the differentiation of multiple neuronal subtypes in the ventral midbrain, whereas Lmx1a appears to be exclusively devoted to the differentiation of the DN lineage.


American Journal of Psychiatry | 2009

Identification of a Schizophrenia-Associated Functional Noncoding Variant in NOS1AP

Naomi Wratten; B.S. Holly Memoli; Yungui Huang; B.A. Anna M. Dulencin; Paul G. Matteson; Michelle A. Cornacchia; Marco A. Azaro; B.S. Jaime Messenger; B.S. Jared E. Hayter; Anne S. Bassett; Steven Buyske; James H. Millonig; Veronica J. Vieland; Linda M. Brzustowicz

OBJECTIVE The authors previously demonstrated significant association between markers within NOS1AP and schizophrenia in a set of Canadian families of European descent, as well as significantly increased expression in schizophrenia of NOS1AP in unrelated postmortem samples from the dorsolateral prefrontal cortex. In this study the authors sought to apply novel statistical methods and conduct additional biological experiments to isolate at least one risk allele within NOS1AP. METHOD Using the posterior probability of linkage disequilibrium (PPLD) to measure the probability that a single nucleotide polymorphism (SNP) is in linkage disequilibrium with schizophrenia, the authors evaluated 60 SNPs from NOS1AP in 24 Canadian families demonstrating linkage and association to this region. SNPs exhibiting strong evidence of linkage disequilibrium were tested for regulatory function by luciferase reporter assay. Two human neural cell lines (SK-N-MC and PFSK-1) were transfected with a vector containing each allelic variant of the SNP, the NOS1AP promoter, and a luciferase gene. Alleles altering expression were further assessed for binding of nuclear proteins by electrophoretic mobility shift assay. RESULTS Three SNPs produced PPLDs >40%. One of them, rs12742393, demonstrated significant allelic expression differences in both cell lines tested. The allelic variation at this SNP altered the affinity of nuclear protein binding to this region of DNA. CONCLUSIONS The A allele of rs12742393 appears to be a risk allele associated with schizophrenia that acts by enhancing transcription factor binding and increasing gene expression.


Biological Psychiatry | 2009

Autism Associated Haplotype Affects the Regulation of the Homeobox Gene, ENGRAILED 2

Rym Benayed; Jiyeon Choi; Paul G. Matteson; Neda Gharani; Silky Kamdar; Linda M. Brzustowicz; James H. Millonig

BACKGROUND Association analysis identified the homeobox transcription factor, ENGRAILED 2 (EN2), as a possible autism spectrum disorder (ASD) susceptibility gene (ASD [MIM 608636]; EN2 [MIM 131310]). The common alleles (underlined) of two intronic single nucleotide polymorphisms (SNPs), rs1861972 (A/G) and rs1861973 (C/T), are over-transmitted to affected individuals both singly and as a haplotype in three separate datasets (518 families total, haplotype p = .00000035). METHODS Further support that EN2 is a possible ASD susceptibility gene requires the identification of a risk allele, a DNA variant that is consistently associated with ASD but is also functional. To identify possible risk alleles, additional association analysis and linkage disequilibrium (LD) mapping were performed. Candidate polymorphisms were then tested for functional differences by luciferase (Luc) reporter transfections and electrophoretic mobility shift assays (EMSAs). RESULTS Association analysis of additional EN2 polymorphisms and LD mapping with Hapmap SNPs identified the rs1861972-rs1861973 haplotype as the most appropriate candidate to test for functional differences. Luciferase reporters for the two common rs1861972-rs1861973 haplotypes (A-C and G-T) were then transfected into human and rat cell lines as well as primary mouse neuronal cultures. In all cases the A-C haplotype resulted in a significant increase in Luc levels (p < .005). The EMSAs were then performed, and nuclear factors were bound specifically to the A and C alleles of both SNPs. CONCLUSIONS These data indicate that the A-C haplotype is functional and, together with the association and LD mapping results, supports EN2 as a likely ASD susceptibility gene and the A-C haplotype as a possible risk allele.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The orphan G protein-coupled receptor, Gpr161, encodes the vacuolated lens locus and controls neurulation and lens development

Paul G. Matteson; Jigar Desai; Ron Korstanje; Gloria Lazar; Tanya E. Borsuk; Jarod Rollins; Sindhuja Kadambi; Jamie Joseph; Taslima Rahman; Jason Wink; Rym Benayed; Beverly Paigen; James H. Millonig

The vacuolated lens (vl) mouse mutant causes congenital cataracts and neural tube defects (NTDs), with the NTDs being caused by abnormal neural fold apposition and fusion. Our positional cloning of vl indicates these phenotypes result from a deletion mutation in an uncharacterized orphan G protein-coupled receptor (GPCR), Gpr161. Gpr161 displays restricted expression to the lateral neural folds, developing lens, retina, limb, and CNS. Characterization of the vl mutation indicates that C-terminal tail of Gpr161 is truncated, leading to multiple effects on the protein, including reduced receptor-mediated endocytosis. We have also mapped three modifier quantitative trait loci (QTL) that affect the incidence of either the vl cataract or NTD phenotypes. Bioinformatic, sequence, genetic, and functional data have determined that Foxe3, a key regulator of lens development, is a gene responsible for the vl cataract-modifying phenotype. These studies have extended our understanding of the vl locus in three significant ways. One, the cloning of the vl locus has identified a previously uncharacterized GPCR-ligand pathway necessary for neural fold fusion and lens development, providing insight into the molecular regulation of these developmental processes. Two, our QTL analysis has established vl as a mouse model for studying the multigenic basis of NTDs and cataracts. Three, we have identified Foxe3 as a genetic modifier that interacts with Gpr161 to regulate lens development.


Human Molecular Genetics | 2015

Engrailed-2 (En2) deletion produces multiple neurodevelopmental defects in monoamine systems, forebrain structures and neurogenesis, and behavior

Matthieu Genestine; Lulu Lin; Madel Durens; Yan Yan; Yiqin Jiang; Smrithi Prem; Kunal Bailoor; Brian Kelly; Patricia K. Sonsalla; Paul G. Matteson; Jill L. Silverman; Jacqueline N. Crawley; James H. Millonig; Emanuel DiCicco-Bloom

Many genes involved in brain development have been associated with human neurodevelopmental disorders, but underlying pathophysiological mechanisms remain undefined. Human genetic and mouse behavioral analyses suggest that ENGRAILED-2 (EN2) contributes to neurodevelopmental disorders, especially autism spectrum disorder. In mouse, En2 exhibits dynamic spatiotemporal expression in embryonic mid-hindbrain regions where monoamine neurons emerge. Considering their importance in neuropsychiatric disorders, we characterized monoamine systems in relation to forebrain neurogenesis in En2-knockout (En2-KO) mice. Transmitter levels of serotonin, dopamine and norepinephrine (NE) were dysregulated from Postnatal day 7 (P7) to P21 in En2-KO, though NE exhibited the greatest abnormalities. While NE levels were reduced ∼35% in forebrain, they were increased 40 -: 75% in hindbrain and cerebellum, and these patterns paralleled changes in locus coeruleus (LC) fiber innervation, respectively. Although En2 promoter was active in Embryonic day 14.5 -: 15.5 LC neurons, expression diminished thereafter and gene deletion did not alter brainstem NE neuron numbers. Significantly, in parallel with reduced NE levels, En2-KO forebrain regions exhibited reduced growth, particularly hippocampus, where P21 dentate gyrus granule neurons were decreased 16%, suggesting abnormal neurogenesis. Indeed, hippocampal neurogenic regions showed increased cell death (+77%) and unexpectedly, increased proliferation. Excess proliferation was restricted to early Sox2/Tbr2 progenitors whereas increased apoptosis occurred in differentiating (Dcx) neuroblasts, accompanied by reduced newborn neuron survival. Abnormal neurogenesis may reflect NE deficits because intra-hippocampal injections of β-adrenergic agonists reversed cell death. These studies suggest that disruption of hindbrain patterning genes can alter monoamine system development and thereby produce forebrain defects that are relevant to human neurodevelopmental disorders.


PLOS ONE | 2014

Autism Associated Gene, ENGRAILED2, and Flanking Gene Levels Are Altered in Post-Mortem Cerebellum

Jiyeon Choi; Myka R. Ababon; Mai Soliman; Yong Lin; Linda M. Brzustowicz; Paul G. Matteson; James H. Millonig

Background Previous genetic studies demonstrated association between the transcription factor ENGRAILED2 (EN2) and Autism Spectrum Disorder (ASD). Subsequent molecular analysis determined that the EN2 ASD-associated haplotype (rs1861972-rs1861973 A-C) functions as a transcriptional activator to increase gene expression. EN2 is flanked by 5 genes, SEROTONIN RECEPTOR5A (HTR5A), INSULIN INDUCED GENE1 (INSIG1), CANOPY1 HOMOLOG (CNPY1), RNA BINDING MOTIF PROTEIN33 (RBM33), and SONIC HEDGEHOG (SHH). These flanking genes are co-expressed with EN2 during development and coordinate similar developmental processes. To investigate if mRNA levels for these genes are altered in individuals with autism, post-mortem analysis was performed. Methods qRT-PCR quantified mRNA levels for EN2 and the 5 flanking genes in 78 post-mortem cerebellar samples. mRNA levels were correlated with both affection status and rs1861972-rs1861973 genotype. Molecular analysis investigated whether EN2 regulates flanking gene expression. Results EN2 levels are increased in affected A-C/G-T individuals (p = .0077). Affected individuals also display a significant increase in SHH and a decrease in INSIG1 levels. Rs1861972-rs1861973 genotype is correlated with significant increases for SHH (A-C/G-T) and CNPY1 (G-T/G-T) levels. Human cell line over-expression and knock-down as well as mouse knock-out analysis are consistent with EN2 and SHH being co-regulated, which provides a possible mechanism for increased SHH post-mortem levels. Conclusions EN2 levels are increased in affected individuals with an A-C/G-T genotype, supporting EN2 as an ASD susceptibility gene. SHH, CNPY1, and INSIG1 levels are also significantly altered depending upon affection status or rs1861972-rs1861973 genotype. Increased EN2 levels likely contribute to elevated SHH expression observed in the post-mortem samples

Collaboration


Dive into the James H. Millonig's collaboration.

Top Co-Authors

Avatar

Paul G. Matteson

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiyeon Choi

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

Linda Brzustowicz

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Myka R. Ababon

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

Silky Kamdar

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Bo I. Li

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

Gloria Lazar

Center for Advanced Biotechnology and Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge