Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Hardwick is active.

Publication


Featured researches published by James Hardwick.


Journal of Thoracic Oncology | 2016

Comprehensive Characterization of Oncogenic Drivers in Asian Lung Adenocarcinoma

Shiyong Li; Yoon-La Choi; Zhuolin Gong; Xiao Liu; Maruja E. Lira; Zhengyan Kan; Ensel Oh; Jian Wang; Jason C. Ting; Xiangsheng Ye; Christoph Reinhart; Xiaoqiao Liu; Yunfei Pei; Wei Zhou; Ronghua Chen; Shijun Fu; Gang Jin; Awei Jiang; Julio Fernandez; James Hardwick; Min Woong Kang; Hoseok I; Hancheng Zheng; Jhingook Kim; Mao Mao

Introduction: The incidence rate of lung adenocarcinoma (LUAD), the predominant histological subtype of lung cancer, is elevated in Asians, particularly in female nonsmokers. The mutation patterns in LUAD in Asians might be distinct from those in LUAD in whites. Methods: We profiled 271 resected LUAD tumors (mainly stage I) to characterize the genomic landscape of LUAD in Asians with a focus on female nonsmokers. Results: Mutations in EGFR, KRAS, erb‐b2 receptor tyrosine kinase 2 gene (ERBB2), and BRAF; gene fusions involving anaplastic lymphoma receptor tyrosine kinase gene (ALK), ROS1, and ret proto‐oncogene (RET); and Met Proto‐Oncogene Tyrosine Kinase (MET) exon 14 skipping were the major drivers in LUAD in Asians, exhibiting mutually exclusive and differing prevalence from those reported in studies of LUAD in non‐Asians. In addition, we identified a novel mutational signature of XNX (the mutated base N in the middle flanked by two identical bases at the 5′ and 3′ positions) that was overrepresented in LUAD tumors in nonsmokers and negatively correlated with the overall mutational frequency. Conclusions: In this cohort, approximately 85% of individuals have known driver mutations (EGFR 59.4%, KRAS 7.4%, ALK 7.4%, ERBB2 2.6%, ROS1 2.2%, RET 2.2%, MET 1.8%, BRAF 1.1%, and NRAS 0.4%). Seventy percent of smokers and 90% of nonsmokers had defined oncogenic drivers matching the U.S. Food and Drug Administration–approved targeted therapies.


Cancer Research | 2016

Abstract 4863: PF-06840003: a highly selective IDO-1 inhibitor that shows good in vivo efficacy in combination with immune checkpoint inhibitors

Joseph Tumang; Bruno Gomes; Martin James Wythes; Stefano Crosignani; Patrick Bingham; Pauline Bottemanne; Hélène Cannelle; Sandra Cauwenberghs; Jenny Chaplin; Deepak Dalvie; Sofie Denies; Coraline De Maeseneire; Peter Folger; Kim Frederix; Jie Guo; James Hardwick; Ken Hook; Katti Jessen; Erick Kindt; Marie-Claire Letellier; Kai-Hsin Liao; Wenlin Li; Karen Maegley; Reece Marillier; Nichol Miller; Brion W. Murray; Romain Pirson; Julie Preillon; Virginie Rabolli; Chad Ray

Tumors use tryptophan-catabolizing enzymes such as Indoleamine 2,3-dioxygenase-1 (IDO-1) to induce an immunosuppressive microenvironment. IDO-1 expression is upregulated in many cancers and described to be a resistance mechanism to immune checkpoint therapies. IDO-1 is induced in response to inflammatory stimuli such as IFN-a and promotes immune tolerance through the catabolism of tryptophan and accumulation of tryptophan catabolites including kynurenine. IDO-1 activity leads to effector T-cell anergy and enhanced Treg function through upregulation of FoxP3. As such, IDO1 is a nexus for the induction of key immunosuppressive mechanisms and represents an important immunotherapeutic target in oncology. We have identified and characterized a new IDO-1 inhibitor. PF-06840003 is a highly selective orally bioavailable IDO-1 inhibitor. PF-06840003 reversed IDO-1-induced T-cell anergy in vitro. In vivo, PF-06840003 reduced intratumoral kynurenine levels in mice by >80% and inhibited tumor growth in multiple preclinical syngeneic models in mice, in combination with immune checkpoint inhibitors. PF-0684003 has favorable predicted human pharmacokinetic properties, including a predicted t1/2 of 16-19 hours. These studies highlight the strong potential of PF-06840003 as a clinical candidate in Immuno-Oncology. Citation Format: Joseph Tumang, Bruno Gomes, Martin Wythes, Stefano Crosignani, Patrick Bingham, Pauline Bottemanne, Helene Cannelle, Sandra Cauwenberghs, Jenny Chaplin, Deepak Dalvie, Sofie Denies, Coraline De Maeseneire, Peter Folger, Kim Frederix, Jie Guo, James Hardwick, Ken Hook, Katti Jessen, Erick Kindt, Marie-Claire Letellier, Kai-Hsin Liao, Wenlin Li, Karen Maegley, Reece Marillier, Nichol Miller, Brion Murray, Romain Pirson, Julie Preillon, Virginie Rabolli, Chad Ray, Stephanie Scales, Jay Srirangam, Jim Solowiej, Nicole Streiner, Vince Torti, Konstantinos Tsaparikos, Paolo Vicini, Gregory Driessens, Manfred Kraus. PF-06840003: a highly selective IDO-1 inhibitor that shows good in vivo efficacy in combination with immune checkpoint inhibitors. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4863.


Cancer Research | 2015

Abstract 764: Rational combination of PF-06463922 (next-generation ALK inhibitor) with PI3K pathway inhibitors overcomes ALKi resistance in EML4-ALK+ NSCLC models

Ping Wei; Ming Qiu; Nathan V. Lee; Joan Cao; Hui Wang; Konstantinos Tsaparikos; Conglin Fan; Timothy Sargis; Justine L. Lam; Maruja E. Lira; Goldie Lui; James Hardwick; Valeria R. Fantin; Paul A. Rejto; Tod Smeal

Crizotinib (PF-02341066) is a small molecule tyrosine kinase inhibitor of ALK, ROS1 and c-MET that is approved in over 70 countries for the treatment of ALK fusion positive non-small cell lung cancer (ALK+ NSCLC). Crizotinib achieved robust objective response rates of approximately 60% in ALK+ NSCLC and significantly improved progression free survival compared to chemotherapy. The emergence of secondary mutations within the ALK kinase domain or the activation of compensatory signaling pathways in crizotinib and other ALKi refractory tumors prompted searches for next generation of ALKi active against resistance mutations as single agents or in combination with other treatments. Such effort led to our recent discovery of PF-06463922, an ALK/ROS1 inhibitor with greatly improved ALK potency, brain penetration, and broad spectrum activity against all known clinical ALKi-resistant mutations. PF-06463922 is being tested in a Phase I clinical trial in both ALK+ and ROS1 fusion positive NSCLC in treatment naive or ALKi relapsed patients. In our current preclinical study, we explored rational combination strategies to further improve the efficacy of PF-06463922 in ALKi resistant cells or tumors. Our results show that compared to PF-06463922 alone, the combination of this compound with PI3K pathway inhibitors, such as PF-05212384 (PI3K/mTOR), GDC0941 (pan-PI3K) or GDC0032 (beta-sparing) leads to more robust anti-proliferative activity in vitro and greater duration of efficacy in vivo in the ALKi resistant models. These PI3K pathway inhibitors also partially overcome EGF or HGF ligand-induced resistance to PF-06463922. Interestingly, in addition to AKT signaling, both compounds inhibit ERK signaling as well, which may be essential for their enhancement of PF-06463922 cell activity or tumor efficacy in combination settings. Studies are ongoing to identify optimal partners for PF-06463922 combination using isoform selective PI3Ki, AKTi and mTORi. We are also exploring the breadth of efficacy of this combination in overcoming resistance to crizotinib, PF-06463922 or other ALKi. The findings provide important evidence that will help define the clinical development path for PF-06463922. This research effort may ultimately lead to more effective approaches to treat ALKi refractory patients in the clinic. Citation Format: Ping Wei, Ming Qiu, Nathan Lee, Joan Cao, Hui Wang, Konstantinos Tsaparikos, Conglin Fan, Timothy Sargis, Justine Lam, Maruja E. Lira, Goldie Lui, James Hardwick, Valeria Fantin, Paul Rejto, Tod Smeal. Rational combination of PF-06463922 (next-generation ALK inhibitor) with PI3K pathway inhibitors overcomes ALKi resistance in EML4-ALK+ NSCLC models. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 764. doi:10.1158/1538-7445.AM2015-764


BMC Bioinformatics | 2018

TNER: a novel background error suppression method for mutation detection in circulating tumor DNA

Shibing Deng; Maruja E. Lira; Donghui Huang; Kai Wang; Crystal Valdez; Jennifer Kinong; Paul A. Rejto; Jadwiga Bienkowska; James Hardwick; Tao Xie

BackgroundUltra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection.ResultsTo achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small.ConclusionsTNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER.


Cancer Research | 2017

Abstract 2355: Palbociclib enhances the antitumor activity of taxanes by abrogating cell cycle checkpoints and alleviating hypoxia in squamous cell lung cancer

Joan Cao; Zhou Zhu; Hui Wang; Tim Nichols; Edward Rosfjord; Christine Hopf; Erik Upeslacis; Paul A. Rejto; Scott Weinrich; Todd VanArsdale; James Hardwick; Ping Wei

Lung cancer remains one of the leading causes of cancer-related mortality. Squamous cell lung cancer (SqCLC) is the second most common subtype of non-small cell lung cancer (NSCLC) and is responsible for ~100,000 deaths in the US and EU. Most SqCLC patients receive chemotherapy as 1st line treatments and have a high un-met medical need for new therapies. Therapeutic approaches that enhance the efficacy of chemotherapy would therefore improve clinical outcomes for this patient population. CDK inhibitors comprise a class of drugs that target the dysregulated cell cycle in malignant cells. Treatment of tumor cells with the CDK4/6 inhibitor palbociclib inhibits tumor growth by decreasing retinoblastoma (RB) protein phosphorylation and inducing cell cycle arrest at the G1/S phase transition. Based on promising clinical trial results, palbociclib in combination with letrozole was granted accelerated approval by the US FDA for the treatment of postmenopausal women with ER-positive, HER2-negative advanced breast cancer. Like hormone receptor positive breast cancer patients, the vast majority of SqCLC patients harbor wild type RB and thus may also benefit from palbociclib treatment. Previously, we reported robust cytotoxicity and antitumor effects of palbociclib plus taxanes, including nanoparticle albumin-bound paclitaxel (Nab-PTX) or docetaxel (DTX), in several preclinical models of SqCLC. In the present study, we extended our efficacy studies of this combination to additional RB+ SqCLC models with diverse molecular genetic backgrounds. In search of mechanisms of action underlying the observed combinatorial effects, we identified several novel mechanisms, including cell cycle checkpoint abrogation as well as reduction of hypoxia-inducible factor 1 alpha (HIF-1α). Decrease in HIF-1α protein led to strong modulation of downstream genes involved in angiogenesis, resulting in reduced blood vessel size in tumor vasculature. Our results suggest that palbociclib enhances the antitumor activity of taxanes by abrogating cell cycle checkpoints and alleviating hypoxia in SqCLC. Citation Format: Joan Cao, Zhou Zhu, Hui Wang, Tim Nichols, Edward Rosfjord, Christine Hopf, Erik Upeslacis, Paul Rejto, Scott Weinrich, Todd Vanarsdale, James Hardwick, Ping Wei. Palbociclib enhances the antitumor activity of taxanes by abrogating cell cycle checkpoints and alleviating hypoxia in squamous cell lung cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2355. doi:10.1158/1538-7445.AM2017-2355


Cancer Research | 2017

Abstract 2749: Liquid biopsy testing allows highly-sensitive detection of plasma cfDNA mutations in 87 breast cancer-related genes

Maruja E. Lira; Tao Xie; Shibing Deng; Jennifer Kinong; Jingjin Gao; Zhou Zhu; Nathan V. Lee; Paul A. Rejto; Jadwiga Bienkowska; James Hardwick; Kai Wang; Stephen Huang

Liquid biopsies have the potential to revolutionize the way physicians select personalized anti-cancer therapies, monitor patient responses to treatment, and characterize acquired resistance to cancer drugs. New tests that use a simple peripheral blood draw offer snapshots of a patient‘s total tumor DNA mutation profile and are attractive because of their minimally-invasive modality and because they integrate information from both primary and metastatic disease. Currently, most plasma cell-free DNA (cfDNA) mutation detection tests used in clinical research detect known hotspot mutations in a limited number of genes. Technologies that interrogate multi-gene panels in cfDNA are advancing, but commercially-available options suitable for clinical use are limited, come at a high cost, and are not customizable. We designed and developed a customized, next generation sequencing-based, liquid biopsy assay capable of detecting somatic mutations in 87 breast cancer genes involved in cell cycle and estrogen receptor signaling. Targeted regions (147 Kb) were enriched using hybrid capture resulting in an average capture specificity and uniformity of 65.93% and 96.38%, respectively. When tested on cfDNA from healthy donors (n=14), we demonstrated a level of specificity >99.99%. Analytical sensitivity of 0.1% was established on HapMap and reference mutant cell line DNA. Using a pool of HapMap genomic DNA (n=10), 96% (48/50) of SNPs with expected allele frequency of 0.1% were detected. In reference mutant cell line DNA with 1% or 0.1% mutant allele frequencies, we were able to reliably detect all mutations present at 1% and mutations at 0.1% in 50% of the cases. Assay validation on plasma cfDNA with matching tumor from ER+, HER2- breast cancer patients will be presented. In conclusion, we developed a highly sensitive and specific liquid biopsy assay to interrogate 87 breast cancer-related genes. The high level of specificity and sensitivity makes the test ideal not only for detecting known cancer gene hotspot mutations but also for detection of novel gene mutations that may arise during treatment as a result of acquired drug resistance. Citation Format: Maruja E. Lira, Tao Xie, Shibing Deng, Jennifer Kinong, Jingjin Gao, Zhou Zhu, Nathan Lee, Paul Rejto, Jadwiga Bienkowska, James Hardwick, Kai Wang, Stephen Huang. Liquid biopsy testing allows highly-sensitive detection of plasma cfDNA mutations in 87 breast cancer-related genes [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2749. doi:10.1158/1538-7445.AM2017-2749


Molecular Cancer Therapeutics | 2015

Abstract A42: Palbociclib potentiates nab-paclitaxel efficacy in pancreatic ductal adenocarcinoma

Manuel Hidalgo; Camino Menéndez; Jing Yuan; Beatriz Salvador; Tao Xie; John Chionis; Pedro P. Lopez-Casas; Xianxian Zheng; James Hardwick; Paul A. Rejto; Peter Olson; Todd VanArsdale; David J. Shields

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with a 5 year survival rate of less than 5%. Deaths caused by pancreatic cancer are projected to exceed the number from colorectal carcinoma by 2020, making PDAC the second leading cause of cancer-related death in the United States, behind only NSCLC. At the molecular level, PDAC is enriched for a number of genetic events central to CDK4/6:CyclinD1 control of cell cycle progression - 90% of tumors harbor oncogenic KRAS mutations, which are synthetic lethal with CDK4/6 inhibition, while the majority of PDAC cases also feature loss of p16INK4A, the endogenous inhibitor of CDK4/6. Rb loss is uncommon in PDAC and phosphorylation of Rb, the canonical CDK4/6 substrate, is detectable at high frequencies, suggesting that aberrant CDK4/6 signaling may be central to loss of cell cycle control in pancreatic cancer. To determine the significance of CDK4/6 activity in pancreatic cancer, patient-derived xenograft models of early and late stage disease were used to evaluate the selective CDK4/6 inhibitor, palbociclib. Combinatorial efficacy of palbociclib with the standard of care agents, Gemcitabine and nab-paclitaxel (Gem/nab-Pac) was also assessed. The majority of models display greater than 50% tumor growth inhibition following treatment with single agent palbociclib, which is comparable to the response to Gem/nab-Pac in those models. Addition of palbociclib to Gem/nab-Pac confers further benefit in most models by increasing the degree of tumor response on therapy and/or maintaining tumor response after drug removal. To dissect the driver activities in the triplet combination, palbociclib was assessed in combination with either Gem or nab-Pac in a series of tumor growth inhibition/delay studies. Palbociclib and nab-Pac are the dominant agents in the combination - palbociclib/nab-Pac doublet activity surpasses the anti-tumor effects of Gem/nab-Pac in the majority of models, while palbociclib/nab-Pac is equivalent or superior to the triple combination in all models. In contrast, the addition of palbociclib to Gem yields little signs of positive combinatorial activity. Based on these data, the palbociclib/nab-Pac combination will be evaluated in an upcoming clinical trial for PDAC patients. Ongoing pre-clinical studies are focused on the mechanistic and molecular basis for the robust activity of the palbociclib/nab-Pac combination in pancreatic cancer. Citation Format: Manuel Hidalgo, Camino Menendez, Jing Yuan, Beatriz Salvador, Tao Xie, John Chionis, Pedro Lopez-Casas, Xianxian Zheng, James Hardwick, Paul Rejto, Peter Olson, Todd VanArsdale, David J. Shields. Palbociclib potentiates nab-paclitaxel efficacy in pancreatic ductal adenocarcinoma. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr A42.


Molecular Cancer Therapeutics | 2015

Abstract A43: RB pathway disruption by the CDK4/6 inhibitor palbociclib enhances responses to chemotherapy in squamous cell lung cancer

Ping Wei; Joan Cao; Goldie Lui; Hui Wang; Konstantinos Tsaparikos; David J. Shields; Kim Arndt; Paul A. Rejto; Todd VanArsdale; James Hardwick

Lung cancer remains one of the leading causes of cancer-related mortality. Squamous cell lung cancer (SqCLC) is the second most common subtype of non-small cell lung cancer (NSCLC). Despite recent development of effective targeted therapeutic agents for lung adenocarcinoma, patients with SqCLC often receive conventional cytotoxic chemotherapy as this cancer subtype lacks genomic alterations that can be targeted by personalized medicine. Hence, novel approaches that enhance the efficacy of chemotherapy will benefit treatment outcomes in this patient population. CDK inhibitors comprise a class of drugs that targets the dysregulated cell cycle in malignant cells. Treatment of tumor cells with the CDK4/6 inhibitor palbociclib inhibits tumor growth by decreasing retinoblastoma (RB) protein phosphorylation and inducing cell cycle arrest at the G1/S phase transition. Based on promising clinical trial data, palbociclib in combination with letrozole was granted accelerated approval by the US FDA for the treatment of postmenopausal women with ER-positive, HER2-negative advanced breast cancer. In this preclinical study, we explored the effect of palbociclib on several chemotherapies (taxanes, platins, and antimetabolites) in preclinical models of SqCLC. Because the activity of chemotherapy generally requires cell cycle progression, careful combination/sequencing of this class of drugs with CDK inhibitors may be important to achieve synergy as well as avoid potential antagonism. To obtain optimal activity of palbociclib and chemotherapy combinations, we investigated several combination/sequencing regimens (concurrent, chemotherapy followed by palbociclib or the reverse sequence) in several SqCLC cell lines. We did not encounter antagonism of chemotherapy-mediated cytotoxicity by palbociclib in any of the tested regimens. Rather, we observed robust combinatorial anti-cancer cell activity in all settings. Combination of palbociclib with chemotherapy was associated with reduction of RB phosphorylation and FOXM1 protein levels, and the induction of p21. Our studies demonstrated that, while palbociclib partially antagonized chemotherapy-induced apoptosis, it significantly synergized with chemotherapy to induce cell cycle arrest as well as a senescence-like phenotype. Cells pretreated with palbociclib plus cisplatin or palbociclib plus docetaxel displayed less cell growth upon drug removal compared to those treated with monotherapies. Finally, palbociclib treatment that followed docetaxel, nab-paclitaxel or cisplatin treatment significantly enhanced the antitumor activity of the chemotherapies in several cell line-derived or patient-derived xenograft models. Our results suggest that treatment with optimal palbociclib and chemotherapy combination/sequencing could lead to better clinical outcomes for SqCLC patients. Citation Format: Ping Wei, Joan Cao, Goldie Lui, Hui Wang, Konstantinos Tsaparikos, David Shields, Kim Arndt, Paul Rejto, Todd VanArsdale, James Hardwick. RB pathway disruption by the CDK4/6 inhibitor palbociclib enhances responses to chemotherapy in squamous cell lung cancer. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr A43.


Cancer Research | 2015

Abstract A2-33: Molecular profiling of patient-derived xenograft models across cancers

Zhengyan Kan; Edward Rosfjord; James Hardwick; Ying Ding; Xianxian Zheng; Julio Fernandez; Stephanie Shi; Mark Ozeck; Hui Wang; Gabriel Troche; Eric Upeslacis; Amy Jackson-Fisher; Keith Ching; Shibing Deng; Xie Tao; John Chionis; Maruja E. Lira; Xiaorong Li; Konstantinos Tsaparikos; Patrick B. Lappin; Pamela Vizcarra; David J. Shields; Judy Lucas; Paul A. Rejto

Patient-Derived Xenograft (PDX) provides important preclinical model for pharmacological testing of oncology drug candidates. Molecular profiling of PDX tumors contributes to many areas of drug discovery from target discovery to development of clinical biomarker hypotheses and clinical trial design. We established a work flow to perform genomic and histopathology analyses of large numbers of PDX tumor models being made available for Pfizer internal research. To date we have generated whole-genome sequencing (WGS), whole-exome sequencing (WES) and whole transcriptome sequencing (RNA-Seq) data on PDX models spanning six cancer types including colon, pancreatic and breast cancers. Bioinformatics pipelines were developed to quantify gene expression and detect genetic alterations including mutation, copy number variations and gene fusions. A controlled evaluation study demonstrated that in silico classification of NGS reads into human/mouse origins is more effective than laboratory-based methods for removing mouse tissue contamination. Comparative analyses of molecular profiles from PDX and primary tumors of the same cancer origins suggest that important patterns of gene expression are retained by PDX models. An integrative genomic classifier was developed using the random forest algorithm, trained on primary tumor data, and shown to identify PDX cancer subtypes with high accuracy. Citation Format: Zhengyan Kan, Edward Rosfjord, James Hardwick, Ying Ding, Xianxian Zheng, Julio Fernandez, Stephanie Shi, Mark Ozeck, Hui Wang, Gabriel Troche, Eric Upeslacis, Amy Jackson-Fisher, Keith Ching, Shibing Deng, Xie Tao, John Chionis, Maruja Lira, Xiaorong Li, Konstantinos Tsaparikos, Patrick Lappin, Pamela Vizcarra, David Shields, Judy Lucas, Paul Rejto. Molecular profiling of patient-derived xenograft models across cancers. [abstract]. In: Proceedings of the AACR Special Conference on Translation of the Cancer Genome; Feb 7-9, 2015; San Francisco, CA. Philadelphia (PA): AACR; Cancer Res 2015;75(22 Suppl 1):Abstract nr A2-33.


Cancer Research | 2015

Abstract 1469: Patient derived xenograft (PDX) models: improving predictability of experimental cancer therapies

Edward Rosfjord; Xin Han; Danielle Leahy; Erik Upeslacis; Justin Lucas; Jonathon Golas; Andrea T. Hooper; Fred Immermann; Bingwen Lu; Jeremy Myers; Zhengyan Kan; James Hardwick; Eric Powell; Puja Sapra; Paul A. Rejto; Hans-Peter Gerber; Judy Lucas

Clinical development of cancer therapies is associated with attrition rates as high as 80-95%. This high attrition suggests that standard preclinical pharmacology models do not accurately reflect clinical responses. The development of more predictive preclinical models requires several considerations; the relevance of the in vivo model, the administration of test agent, and the interpretation of efficacy data. PDX are cancer models developed from the direct transfer of patient tumor tissue into immunocompromised mice. A collection of PDX models, by retaining the genetic and histologic characteristics of the patients from which they were derived, represents the complexity and heterogeneity of human cancer. To minimize the clinical attrition rates of oncology compounds, we are developing hundreds of PDX models in seven major cancer indications. The collection is being molecularly profiled by RNAseq, WES, and proteomics. Profiling has identified models with robust expression of target proteins or mutant oncogenes that are likely to respond in preclinical efficacy tests. Conversely, the PDX models may provide an understanding of resistance, for example evaluating models with good target expression that fail to respond to therapy. Patient and tumor information, if known, has been collected for each PDX model including age, sex, cancer stage and grade, diagnosis, primary or metastatic site, and prior treatments. In addition to the improvements provided by the PDX models, a preclinical paradigm shift away from treatment with maximally tolerated dose towards clinically relevant dose (CRD), taking into consideration such aspects as exposure, formulation, route and schedule, is critical when attempting to predict clinical outcome from preclinical data. Also essential is the incorporation of clinically meaningful endpoints (regression) when assessing preclinical activity. We have initiated studies on cohorts of non small cell lung and breast PDX models to predict the likely clinical efficacy of candidate compounds for clinical development and to determine the CRD for standard of care (SOC) regimens required to define the most promising Phase II/III combination therapies. Anti-tumor activities were characterized using RECIST criteria of progressive disease (PD), stable disease (SD), partial response (PR), and complete response (CR). Target expression was evaluated by RNA, proteomics and immunohistochemistry. Preliminary results demonstrate a spectrum of responses against experimental therapeutics, including Phase I ADCs and are defining the CRD required for combination treatments with SOC. Identification of the most critical parameters of PDX models predicting clinical outcome will help in validating the utility of ‘n of 1′ studies with the PDX collection, inform patient enrollment strategies, guide combination therapies, and provide insight for identifying new tumor indications. Citation Format: Edward Rosfjord, Xin Han, Danielle Leahy, Erik Upeslacis, Justin Lucas, Jonathon Golas, Andrea Hooper, Fred Immermann, Bingwen Lu, Jeremy Myers, Zhengyan Kan, James Hardwick, Eric Powell, Puja Sapra, Paul Rejto, Hans-Peter Gerber, Judy Lucas. Patient derived xenograft (PDX) models: improving predictability of experimental cancer therapies. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 1469. doi:10.1158/1538-7445.AM2015-1469

Collaboration


Dive into the James Hardwick's collaboration.

Researchain Logo
Decentralizing Knowledge