Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James I. MacRae is active.

Publication


Featured researches published by James I. MacRae.


Cell | 2015

Antioxidant Role for Lipid Droplets in a Stem Cell Niche of Drosophila.

Andrew P. Bailey; Grielof Koster; Elizabeth M. Hirst; James I. MacRae; C. Lechene; Anthony D. Postle; Alex P. Gould

Summary Stem cells reside in specialized microenvironments known as niches. During Drosophila development, glial cells provide a niche that sustains the proliferation of neural stem cells (neuroblasts) during starvation. We now find that the glial cell niche also preserves neuroblast proliferation under conditions of hypoxia and oxidative stress. Lipid droplets that form in niche glia during oxidative stress limit the levels of reactive oxygen species (ROS) and inhibit the oxidation of polyunsaturated fatty acids (PUFAs). These droplets protect glia and also neuroblasts from peroxidation chain reactions that can damage many types of macromolecules. The underlying antioxidant mechanism involves diverting PUFAs, including diet-derived linoleic acid, away from membranes to the core of lipid droplets, where they are less vulnerable to peroxidation. This study reveals an antioxidant role for lipid droplets that could be relevant in many different biological contexts.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites

Cyrille Y. Botté; Yoshiki Yamaryo-Botté; Thusitha Rupasinghe; Kylie A. Mullin; James I. MacRae; Timothy P. Spurck; Ming Kalanon; Melanie J. Shears; Ross L. Coppel; Paul K. Crellin; Eric Maréchal; Malcolm J. McConville; Geoffrey I. McFadden

The human malaria parasite Plasmodium falciparum harbors a relict, nonphotosynthetic plastid of algal origin termed the apicoplast. Although considerable progress has been made in defining the metabolic functions of the apicoplast, information on the composition and biogenesis of the four delimiting membranes of this organelle is limited. Here, we report an efficient method for preparing highly purified apicoplasts from red blood cell parasite stages and the comprehensive lipidomic analysis of this organelle. Apicoplasts were prepared from transgenic parasites expressing an epitope-tagged triosephosphate transporter and immunopurified on magnetic beads. Gas and liquid chromatography MS analyses of isolated apicoplast lipids indicated significant differences compared with total parasite lipids. In particular, apicoplasts were highly enriched in phosphatidylinositol, consistent with a suggested role for phosphoinositides in targeting membrane vesicles to apicoplasts. Apicoplast phosphatidylinositol and other phospholipids were also enriched in saturated fatty acids, which could reflect limited acyl exchange with other membrane phospholipids and/or a requirement for specific physical properties. Lipids atypical for plastids (sphingomyelins, ceramides, and cholesterol) were detected in apicoplasts. The presence of cholesterol in apicoplast membranes was supported by filipin staining of isolated apicoplasts. Galactoglycerolipids, dominant in plant and algal plastids, were not detected in P. falciparum apicoplasts, suggesting that these glycolipids are a hallmark of photosynthetic plastids and were lost when these organisms assumed a parasitic lifestyle. Apicoplasts thus contain an atypical melange of lipids scavenged from the human host alongside lipids remodeled by the parasite cytoplasm, and stable isotope labeling shows some apicoplast lipids are generated de novo by the organelle itself.


Journal of Biological Chemistry | 2012

Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii

Srinivasan Ramakrishnan; Melissa D. Docampo; James I. MacRae; François M. Pujol; Carrie F. Brooks; Giel G. van Dooren; J. Kalervo Hiltunen; Alexander J. Kastaniotis; Malcolm J. McConville; Boris Striepen

Background: Parasite fatty acid synthesis is an attractive drug target but complex and poorly understood. Results: We delineate the molecular activity of two pathways in Toxoplasma combining metabolomic and genetic analyses. Conclusion: The apicoplast is a significant source of fatty acids, and its products are further modified in the parasite endoplasmic reticulum. Significance: We define the metabolic host-parasite relationship with molecular resolution in intracellular parasites. Apicomplexan parasites are responsible for high impact human diseases such as malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular pathogens are dependent on both de novo lipid biosynthesis as well as the uptake of host lipids for biogenesis of parasite membranes. Genome annotations and biochemical studies indicate that apicomplexan parasites can synthesize fatty acids via a number of different biosynthetic pathways that are differentially compartmentalized. However, the relative contribution of each of these biosynthetic pathways to total fatty acid composition of intracellular parasite stages remains poorly defined. Here, we use a combination of genetic, biochemical, and metabolomic approaches to delineate the contribution of fatty acid biosynthetic pathways in Toxoplasma gondii. Metabolic labeling studies with [13C]glucose showed that intracellular tachyzoites synthesized a range of long and very long chain fatty acids (C14:0–26:1). Genetic disruption of the apicoplast-localized type II fatty-acid synthase resulted in greatly reduced synthesis of saturated fatty acids up to 18 carbons long. Ablation of type II fatty-acid synthase activity resulted in reduced intracellular growth that was partially restored by addition of long chain fatty acids. In contrast, synthesis of very long chain fatty acids was primarily dependent on a fatty acid elongation system comprising three elongases, two reductases, and a dehydratase that were localized to the endoplasmic reticulum. The function of these enzymes was confirmed by heterologous expression in yeast. This elongase pathway appears to have a unique role in generating very long unsaturated fatty acids (C26:1) that cannot be salvaged from the host.


Parasitology | 2010

Central carbon metabolism of Leishmania parasites.

Eleanor C. Saunders; David P. De Souza; Thomas Naderer; Sernee Mf; Julie E. Ralton; Maria A. Doyle; James I. MacRae; Jenny L. Chambers; Joanne Heng; Amsha Nahid; Vladimir A. Likić; Malcolm J. McConville

Leishmania spp. are sandfly-transmitted protozoa parasites that cause a spectrum of diseases in humans. Many enzymes involved in Leishmania central carbon metabolism differ from their equivalents in the mammalian host and are potential drug targets. In this review we summarize recent advances in our understanding of Leishmania central carbon metabolism, focusing on pathways of carbon utilization that are required for growth and pathogenesis in the mammalian host. While Leishmania central carbon metabolism shares many features in common with other pathogenic trypanosomatids, significant differences are also apparent. Leishmania parasites are also unusual in constitutively expressing most core metabolic pathways throughout their life cycle, a feature that may allow these parasites to exploit a range of different carbon sources (primarily sugars and amino acids) rapidly in both the insect vector and vertebrate host. Indeed, recent gene deletion studies suggest that mammal-infective stages are dependent on multiple carbon sources in vivo. The application of metabolomic approaches, outlined here, are likely to be important in defining aspects of central carbon metabolism that are essential at different stages of mammalian host infection.


BMC Systems Biology | 2009

LeishCyc: a biochemical pathways database for Leishmania major

Maria A. Doyle; James I. MacRae; David P. De Souza; Eleanor C. Saunders; Malcolm J. McConville; Vladimir A. Likić

BackgroundLeishmania spp. are sandfly transmitted protozoan parasites that cause a spectrum of diseases in more than 12 million people worldwide. Much research is now focusing on how these parasites adapt to the distinct nutrient environments they encounter in the digestive tract of the sandfly vector and the phagolysosome compartment of mammalian macrophages. While data mining and annotation of the genomes of three Leishmania species has provided an initial inventory of predicted metabolic components and associated pathways, resources for integrating this information into metabolic networks and incorporating data from transcript, protein, and metabolite profiling studies is currently lacking. The development of a reliable, expertly curated, and widely available model of Leishmania metabolic networks is required to facilitate systems analysis, as well as discovery and prioritization of new drug targets for this important human pathogen.DescriptionThe LeishCyc database was initially built from the genome sequence of Leishmania major (v5.2), based on the annotation published by the Wellcome Trust Sanger Institute. LeishCyc was manually curated to remove errors, correct automated predictions, and add information from the literature. The ongoing curation is based on public sources, literature searches, and our own experimental and bioinformatics studies. In a number of instances we have improved on the original genome annotation, and, in some ambiguous cases, collected relevant information from the literature in order to help clarify gene or protein annotation in the future. All genes in LeishCyc are linked to the corresponding entry in GeneDB (Wellcome Trust Sanger Institute).ConclusionThe LeishCyc database describes Leishmania major genes, gene products, metabolites, their relationships and biochemical organization into metabolic pathways. LeishCyc provides a systematic approach to organizing the evolving information about Leishmania biochemical networks and is a tool for analysis, interpretation, and visualization of Leishmania Omics data (transcriptomics, proteomics, metabolomics) in the context of metabolic pathways. LeishCyc is the first such database for the Trypanosomatidae family, which includes a number of other important human parasites. Flexible query/visualization capabilities are provided by the Pathway Tools software and its Web interface. The LeishCyc database is made freely available over the Internet http://www.leishcyc.org.


PLOS Pathogens | 2014

BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of Toxoplasma gondii and Plasmodium berghei

Rebecca D. Oppenheim; Darren J. Creek; James I. MacRae; Katarzyna Modrzynska; Paco Pino; Julien Limenitakis; Valérie Polonais; Frank Seeber; Michael P. Barrett; Oliver Billker; Malcolm J. McConville; Dominique Soldati-Favre

While the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are thought to primarily depend on glycolysis for ATP synthesis, recent studies have shown that they can fully catabolize glucose in a canonical TCA cycle. However, these parasites lack a mitochondrial isoform of pyruvate dehydrogenase and the identity of the enzyme that catalyses the conversion of pyruvate to acetyl-CoA remains enigmatic. Here we demonstrate that the mitochondrial branched chain ketoacid dehydrogenase (BCKDH) complex is the missing link, functionally replacing mitochondrial PDH in both T. gondii and P. berghei. Deletion of the E1a subunit of T. gondii and P. berghei BCKDH significantly impacted on intracellular growth and virulence of both parasites. Interestingly, disruption of the P. berghei E1a restricted parasite development to reticulocytes only and completely prevented maturation of oocysts during mosquito transmission. Overall this study highlights the importance of the molecular adaptation of BCKDH in this important class of pathogens.


Molecular Biology and Evolution | 2013

Alveolate Mitochondrial Metabolic Evolution: Dinoflagellates Force Reassessment of the Role of Parasitism as a Driver of Change in Apicomplexans

Jillian C. Danne; Sebastian G. Gornik; James I. MacRae; Malcolm J. McConville; Ross F. Waller

Mitochondrial metabolism is central to the supply of ATP and numerous essential metabolites in most eukaryotic cells. Across eukaryotic diversity, however, there is evidence of much adaptation of the function of this organelle according to specific metabolic requirements and/or demands imposed by different environmental niches. This includes substantial loss or retailoring of mitochondrial function in many parasitic groups that occupy potentially nutrient-rich environments in their metazoan hosts. Infrakingdom Alveolata comprises a well-supported alliance of three disparate eukaryotic phyla-dinoflagellates, apicomplexans, and ciliates. These major taxa represent diverse lifestyles of free-living phototrophs, parasites, and predators and offer fertile territory for exploring character evolution in mitochondria. The mitochondria of apicomplexan parasites provide much evidence of loss or change of function from analysis of mitochondrial protein genes. Much less, however, is known of mitochondrial function in their closest relatives, the dinoflagellate algae. In this study, we have developed new models of mitochondrial metabolism in dinoflagellates based on gene predictions and stable isotope labeling experiments. These data show that many changes in mitochondrial gene content previously only known from apicomplexans are found in dinoflagellates also. For example, loss of the pyruvate dehydrogenase complex and changes in tricarboxylic acid (TCA) cycle enzyme complement are shared by both groups and, therefore, represent ancestral character states. Significantly, we show that these changes do not result in loss of typical TCA cycle activity fueled by pyruvate. Thus, dinoflagellate data show that many changes in alveolate mitochondrial metabolism are independent of the major lifestyle changes seen in these lineages and provide a revised view of mitochondria character evolution during evolution of parasitism in apicomplexans.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate

Sebastian G. Gornik; Febrimarsa; Andrew Cassin; James I. MacRae; Abhinay Ramaprasad; Zineb Rchiad; Malcolm J. McConville; Antony Bacic; Geoffrey I. McFadden; Arnab Pain; Ross F. Waller

Significance Endosymbiotic organelles are a defining feature of eukaryotes—the last common ancestor and all extant eukaryotes possess at least a mitochondrial derivative. Although mitochondria and plastids are identified with aerobic ATP synthesis and photosynthesis, respectively, their retention by their host cells requires the merging and integration of many, often redundant, metabolic pathways. As a result, complex metabolic interdependencies arise between these formerly independent cells. Complete loss of endosymbiotic organelles, even where aerobic respiration or photosynthesis is lost, is exceedingly difficult, as demonstrated by persistence of organelles throughout secondary anaerobes and parasites. Here, we identify a rare but clear case of plastid loss in a parasitic alga and detail the metabolic disentanglement that was required to achieve this exceptional evolutionary event. Organelle gain through endosymbiosis has been integral to the origin and diversification of eukaryotes, and, once gained, plastids and mitochondria seem seldom lost. Indeed, discovery of nonphotosynthetic plastids in many eukaryotes—notably, the apicoplast in apicomplexan parasites such as the malaria pathogen Plasmodium—highlights the essential metabolic functions performed by plastids beyond photosynthesis. Once a cell becomes reliant on these ancillary functions, organelle dependence is apparently difficult to overcome. Previous examples of endosymbiotic organelle loss (either mitochondria or plastids), which have been invoked to explain the origin of eukaryotic diversity, have subsequently been recognized as organelle reduction to cryptic forms, such as mitosomes and apicoplasts. Integration of these ancient symbionts with their hosts has been too well developed to reverse. Here, we provide evidence that the dinoflagellate Hematodinium sp., a marine parasite of crustaceans, represents a rare case of endosymbiotic organelle loss by the elimination of the plastid. Extensive RNA and genomic sequencing data provide no evidence for a plastid organelle, but, rather, reveal a metabolic decoupling from known plastid functions that typically impede organelle loss. This independence has been achieved through retention of ancestral anabolic pathways, enzyme relocation from the plastid to the cytosol, and metabolic scavenging from the parasite’s host. Hematodinium sp. thus represents a further dimension of endosymbiosis—life after the organelle.


Human Molecular Genetics | 2016

Reduced cholesterol levels impair Smoothened activation in Smith–Lemli–Opitz syndrome

Robert Blassberg; James I. MacRae; James Briscoe; John Jacob

Smith–Lemli–Opitz syndrome (SLOS) is a common autosomal-recessive disorder that results from mutations in the gene encoding the cholesterol biosynthetic enzyme 7-dehydrocholesterol reductase (DHCR7). Impaired DHCR7 function is associated with a spectrum of congenital malformations, intellectual impairment, epileptiform activity and autism spectrum disorder. Biochemically, there is a deficit in cholesterol and an accumulation of its metabolic precursor 7-dehydrocholesterol (7DHC) in developing tissues. Morphological abnormalities in SLOS resemble those seen in congenital Sonic Hedgehog (SHH)-deficient conditions, leading to the proposal that the pathogenesis of SLOS is mediated by aberrant SHH signalling. SHH signalling is transduced through the transmembrane protein Smoothened (SMO), which localizes to the primary cilium of a cell on activation and is both positively and negatively regulated by sterol molecules derived from cholesterol biosynthesis. One proposed mechanism of SLOS involves SMO dysregulation by altered sterol levels, but the salient sterol species has not been identified. Here, we clarify the relationship between disrupted cholesterol metabolism and reduced SHH signalling in SLOS by modelling the disorder in vitro. Our results indicate that a deficit in cholesterol, as opposed to an accumulation of 7DHC, impairs SMO activation and its localization to the primary cilium.


Trends in Parasitology | 2016

Apicomplexan Energy Metabolism: Carbon Source Promiscuity and the Quiescence Hyperbole

Damien Jacot; Ross F. Waller; Dominique Soldati-Favre; Dougal A. MacPherson; James I. MacRae

The nature of energy metabolism in apicomplexan parasites has been closely investigated in the recent years. Studies in Plasmodium spp. and Toxoplasma gondii in particular have revealed that these parasites are able to employ enzymes in non-traditional ways, while utilizing multiple anaplerotic routes into a canonical tricarboxylic acid (TCA) cycle to satisfy their energy requirements. Importantly, some life stages of these parasites previously considered to be metabolically quiescent are, in fact, active and able to adapt their carbon source utilization to survive. We compare energy metabolism across the life cycle of malaria parasites and consider how this varies in other apicomplexans and related organisms, while discussing how this can be exploited for therapeutic intervention in these diseases.

Collaboration


Dive into the James I. MacRae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge