Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James J. Bell is active.

Publication


Featured researches published by James J. Bell.


The ISME Journal | 2012

Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges.

Susanne Schmitt; Peter Tsai; James J. Bell; Jane Fromont; Micha Ilan; Niels Lindquist; Thierry Perez; Allen G. Rodrigo; Peter J. Schupp; Jean Vacelet; Nicole S. Webster; Ute Hentschel; Michael W. Taylor

Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the worlds oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations.


Global Change Biology | 2013

Could some coral reefs become sponge reefs as our climate changes

James J. Bell; Simon K. Davy; Timothy Jones; Michael W. Taylor; Nicole S. Webster

Coral reefs across the world have been seriously degraded and have a bleak future in response to predicted global warming and ocean acidification (OA). However, this is not the first time that biocalcifying organisms, including corals, have faced the threat of extinction. The end-Triassic mass extinction (200 million years ago) was the most severe biotic crisis experienced by modern marine invertebrates, which selected against biocalcifiers; this was followed by the proliferation of another invertebrate group, sponges. The duration of this sponge-dominated period far surpasses that of alternative stable-ecosystem or phase-shift states reported on modern day coral reefs and, as such, a shift to sponge-dominated reefs warrants serious consideration as one future trajectory of coral reefs. We hypothesise that some coral reefs of today may become sponge reefs in the future, as sponges and corals respond differently to changing ocean chemistry and environmental conditions. To support this hypothesis, we discuss: (i) the presence of sponge reefs in the geological record; (ii) reported shifts from coral- to sponge-dominated systems; and (iii) direct and indirect responses of the sponge holobiont and its constituent parts (host and symbionts) to changes in temperature and pH. Based on this evidence, we propose that sponges may be one group to benefit from projected climate change and ocean acidification scenarios, and that increased sponge abundance represents a possible future trajectory for some coral reefs, which would have important implications for overall reef functioning.


Journal of the Marine Biological Association of the United Kingdom | 2000

The influences of bathymetry and flow regime upon the morphology of sublittoral sponge communities

James J. Bell; David K. A. Barnes

Sponge communities were sampled at 3 m depth intervals at six sites experiencing different flow regimes at Lough Hyne, Ireland. Sponges were identified and classified within the following morphological groups: encrusting, massive, globular, pedunculate, tubular, flabellate, arborescent, repent and papillate morphological types on both vertical (≈90°) and inclined (≈45°) surfaces.Differences in the proportional abundance of the sponge body forms and density (sponge m−2) were observed between sites and depths. The density of sponges increased with depth at sites of slight to moderate current flow, but not at the site where current flow was turbulent. Morphological diversity of sponge communities decreased with increasing current flow due to the removal of delicate forms such as pedunculate and arborescent shaped sponges. Massive and encrusting morphologies dominated at the high-energy sites (fast and turbulent flow regimes) due to a high basal area to volume ratio, which prevents removal from cliff surfaces. However, pedunculate, papillate and arborescent types dominated at the low current sites as these shapes may help to prevent the settlement of sediment on sponge surfaces. Bray–Curtis Similarity analysis and Correspondence Analysis were used to distinguish between five different morphological communities.


Hydrobiologia | 2000

A sponge diversity centre within a marine ‘island’

James J. Bell; David K. A. Barnes

The exposed and gulf-stream warmed south-west coast of Ireland has a Lusitanean fauna composed of elements of the colder waters to the north and east, and others from the warmer Mediterranean Sea. Lough Hyne, a small marine body, is unusual on this coast in being very sheltered, but also in being characterised by many different niches within a small space (1 km2). Sponges are particularly abundant, morphologically varied and more than 100 species have been described. Species diversity was measured at 6 m intervals on vertical and inclined profiles (to a maximum of 30 m) at six sites, spanning a range of flow rate and sedimentation regimes. Diversity, richness, evenness and density varied significantly with both flow regime and depth, but was much lower on the surrounding Atlantic coast. Four different sponge communities were differentiated on the basis of sponge species assemblages which correlated with different environmental conditions. At sites of turbulent and fast flow conditions, sponge diversity and richness were lowest, with the highest values being found at the sites of moderate and high sedimentation. Significant differences were observed in all four ecological variables with respect to substratum angle with the exception of the site experiencing the most turbulent flow conditions. Lough Hyne was found to possess the second highest sponge species diversity (H=3.626) and richness (77 species) of all available figures from temperate, polar and tropical areas (of similar sized sampling area). The uniqueness, diversity and species composition of the sponge community at this location suggests Lough Hyne is, biologically, a marine island within the island of Ireland.


Dermatology | 2000

Mycosis fungoides: Review of Epidemiological Observations

M. Morales Suárez-Varela; A. Llopis González; A. Marquina Vila; James J. Bell

Background: Mycosis fungoides (MF) is a chronic cutaneous T-cell lymphoma characterized by small cells with cerebriform nuclei that usually express a mature peripheral T-helper cell (CD4+) immunophenotype. Its evolution is typically quite slow, with years between the first manifestations and development of advanced stages of disease. Objective: The purpose of the present paper is to contribute to the material about MF already present in the literature. The review articles that have appeared to date fundamentally address the morphological characteristics, diagnostic criteria and treatment of the disease; in contrast, the present study centers on the evolution of the incidence of MF and on the knowledge of the possible risk factors implicated in its development. Methods: Review of published papers about MF epidemiology. Results: The evidence suggests that the incidence is increasing, but this may be artifactual due to improved diagnostic techniques. The risk of MF is limited to gender and race, being higher in males and in blacks. Survival is highly stage dependent, but 90% of patients survive 15 years with only 10% of cutaneous involvement. Few risk factors have been identified, but several studies have found an association with industrial exposure, particularly to oils. Conclusion: MF is a rare disease and its risk factors have not been studied in any great detail. A European case-control study in progress will substantially increase the evidence available and progress towards identifying a prevention strategy.


Marine Pollution Bulletin | 2015

Sediment impacts on marine sponges

James J. Bell; Emily McGrath; Andrew Biggerstaff; Tracey Bates; Holly Bennett; Joseph Marlow; Megan Shaffer

Changes in sediment input to marine systems can influence benthic environments in many ways. Sponges are important components of benthic ecosystems world-wide and as sessile suspension feeders are likely to be impacted by changes in sediment levels. Despite this, little is known about how sponges respond to changes in settled and suspended sediment. Here we review the known impacts of sedimentation on sponges and their adaptive capabilities, whilst highlighting gaps in our understanding of sediment impacts on sponges. Although the literature clearly shows that sponges are influenced by sediment in a variety of ways, most studies confer that sponges are able to tolerate, and in some cases thrive, in sedimented environments. Critical gaps exist in our understanding of the physiological responses of sponges to sediment, adaptive mechanisms, tolerance limits, and the particularly the effect of sediment on early life history stages.


PLOS ONE | 2014

Reduced diversity and high sponge abundance on a sedimented indo-pacific reef system: Implications for future changes in environmental quality

Abigail Powell; Leanne J. Hepburn; Timothy Jones; Jade Berman; Jamaluddin Jompa; James J. Bell

Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning.


PLOS ONE | 2012

Estimates of Particulate Organic Carbon Flowing from the Pelagic Environment to the Benthos through Sponge Assemblages

Alejandra Perea-Blázquez; Simon K. Davy; James J. Bell

Despite the importance of trophic interactions between organisms, and the relationship between primary production and benthic diversity, there have been few studies that have quantified the carbon flow from pelagic to benthic environments as a result of the assemblage level activity of suspension-feeding organisms. In this study, we examine the feeding activity of seven common sponge species from the Taputeranga marine reserve on the south coast of Wellington in New Zealand. We analysed the diet composition, feeding efficiency, pumping rates, and the number of food particles (specifically picoplanktonic prokaryotic cells) retained by sponges. We used this information, combined with abundance estimates of the sponges and estimations of the total amount of food available to sponges in a known volume of water (89,821 m3), to estimate: (1) particulate organic carbon (POC) fluxes through sponges as a result of their suspension-feeding activities on picoplankton; and (2) the proportion of the available POC from picoplankton that sponges consume. The most POC acquired by the sponges was from non-photosynthetic bacterial cells (ranging from 0.09 to 4.69 g C d−1 with varying sponge percentage cover from 0.5 to 5%), followed by Prochlorococcus (0.07 to 3.47 g C d−1) and then Synechococcus (0.05 to 2.34 g C d−1) cells. Depending on sponge abundance, the amount of POC that sponges consumed as a proportion of the total POC available was 0.2–12.1% for Bac, 0.4–21.3% for Prochlo, and 0.3–15.8% for Synecho. The flux of POC for the whole sponge assemblage, based on the consumption of prokaryotic picoplankton, ranged from 0.07–3.50 g C m2 d−1. This study is the first to estimate the contribution of a sponge assemblage (rather than focusing on individual sponge species) to POC flow from three groups of picoplankton in a temperate rocky reef through the feeding activity of sponges and demonstrates the importance of sponges to energy flow in rocky reef environments.


PLOS ONE | 2014

Resilience to disturbance despite limited dispersal and self-recruitment in tropical barrel sponges: Implications for conservation and management

James J. Bell; Danielle Hannan; Abdul Haris; Jamaludin Jompa; Luke Thomas

While estimates of connectivity are important for effective management, few such estimates are available for reef invertebrates other than for corals. Barrel sponges are one of the largest and most conspicuous members of the coral reef fauna across the Indo-Pacific and given their large size, longevity and ability to process large volumes of water, they have a major role in reef functioning. Here we used a panel of microsatellite markers to characterise the genetic structure of two barrel sponge species, Xestospongia testudinaria and a currently undescribed Xestospongia species. We sampled across seven populations in the Wakatobi Marine National Park, SE Sulawesi (Indonesia) spanning a spatial scale of approximately 2 to 70 km, and present the first estimates of demographic connectivity for coral reef sponges. Genetic analyses showed high levels of genetic differentiation between all populations for both species, but contrasting patterns of genetic structuring for the two species. Autocorrelation analyses showed the likely dispersal distances of both species to be in the order of 60 and 140 m for Xestopongia sp. and Xestospongia testudinaria, respectively, which was supported by assignment tests that showed high levels of self-recruitment (>80%). We also found consistently high inbreeding coefficients across all populations for both species. Our study highlights the potential susceptibility of barrel sponges to environmental perturbations because they are generally long-lived, slow growing, have small population sizes and are likely to be reliant on self-recruitment. Surprisingly, despite these features we actually found the highest abundance of both barrel sponge species (although they were generally smaller) at a site that has been severely impacted by humans over the last fifty years. This suggests that barrel sponges exhibit environmental adaptation to declining environmental quality and has important implications for the management and conservation of these important reef species.


FEMS Microbiology Ecology | 2014

Influence of environmental variation on symbiotic bacterial communities of two temperate sponges

César A. Cárdenas; James J. Bell; Simon K. Davy; Michael Hoggard; Michael W. Taylor

Sponges are an important component of temperate subtidal marine ecosystems, with a range of important functional roles and extensive symbiotic relationships with microorganisms. However, much remains unknown about their relationships with these symbiotic microorganisms, and specifically, the role that these symbionts play in sponge physiology, feeding and adaptation to local environmental conditions. Changes in environmental factors may alter relationships between sponges and their symbionts, which could conceivably influence the abundance and distribution patterns of some temperate sponge species. Here, we analyzed the effect of transplantation of sponges between different habitats to test the effect of changes in environmental conditions on the stability of the bacterial communities in specimens of Tethya bergquistae and Ecionemia alata, based on pyrosequencing of amplified 16S rRNA genes. Bacterial communities differed markedly between the two host species. While some morphological changes were observed in transplanted sponges, transplantation had little overall effect on sponge-associated bacterial communities at either phylum or 97%-OTU level. Our results show the importance of host species and also the stability of sponge-associated bacterial communities under environmental variation.

Collaboration


Dive into the James J. Bell's collaboration.

Top Co-Authors

Avatar

Simon K. Davy

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

Jonathan P. A. Gardner

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Holly Bennett

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Luis Carballo

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Andrew Biggerstaff

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

Joseph Marlow

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge