Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James J. Bock is active.

Publication


Featured researches published by James J. Bock.


Publications of the Astronomical Society of the Pacific | 2010

The Herschel ATLAS

Stephen Anthony Eales; Loretta Dunne; D. L. Clements; A. Cooray; G. De Zotti; Simon Dye; R. J. Ivison; M. J. Jarvis; Guilaine Lagache; Steve Maddox; M. Negrello; S. Serjeant; M. A. Thompson; E. van Kampen; A. Amblard; Paola Andreani; M. Baes; A. Beelen; G. J. Bendo; Dominic J. Benford; Frank Bertoldi; James J. Bock; D. G. Bonfield; A. Boselli; C. Bridge; V. Buat; D. Burgarella; R. Carlberg; A. Cava; P. Chanial

The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 deg2 of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands.


The Astrophysical Journal | 2009

Improved Measurements of the Temperature and Polarization of the Cosmic Microwave Background from QUaD

Michael L. Brown; Peter A. R. Ade; James J. Bock; Melanie Bowden; G. Cahill; P. G. Castro; S. Church; T. Culverhouse; R. B. Friedman; K. Ganga; Walter Kieran Gear; Sujata Gupta; J. Hinderks; J. M. Kovac; A. E. Lange; E. M. Leitch; S. J. Melhuish; Y. Memari; J. A. Murphy; A. Orlando; C. O’Sullivan; L. Piccirillo; C. Pryke; Nutan J. Rajguru; B. Rusholme; R. Schwarz; Andy Taylor; K. L. Thompson; A. H. Turner; E. Y. S. Wu

We present an improved analysis of the final data set from the QUaD experiment. Using an improved technique to remove ground contamination, we double the effective sky area and hence increase the precision of our cosmic microwave background (CMB) power spectrum measurements by ~30% versus that previously reported. In addition, we have improved our modeling of the instrument beams and have reduced our absolute calibration uncertainty from 5% to 3.5% in temperature. The robustness of our results is confirmed through extensive jackknife tests, and by way of the agreement that we find between our two fully independent analysis pipelines. For the standard six-parameter ΛCDM model, the addition of QUaD data marginally improves the constraints on a number of cosmological parameters over those obtained from the WMAP experiment alone. The impact of QUaD data is significantly greater for a model extended to include either a running in the scalar spectral index, or a possible tensor component, or both. Adding both the QUaD data and the results from the Arcminute Cosmology Bolometer Array Receiver experiment, the uncertainty in the spectral index running is reduced by ~25% compared to WMAP alone, while the upper limit on the tensor-to-scalar ratio is reduced from r < 0.48 to r < 0.33 (95% c.l.). This is the strongest limit on tensors to date from the CMB alone. We also use our polarization measurements to place constraints on parity-violating interactions to the surface of last scattering, constraining the energy scale of Lorentz violating interactions to <1.5 × 10^(–43) GeV (68% c.l.). Finally, we place a robust upper limit on the strength of the lensing B-mode signal. Assuming a single flat band power between l = 200 and l = 2000, we constrain the amplitude of B-modes to be <0.57 μK^2 (95% c.l.).


Publications of the Astronomical Society of the Pacific | 2010

The Herschel Reference Survey

A. Boselli; Stephen Anthony Eales; Luca Cortese; G. J. Bendo; P. Chanial; V. Buat; Jonathan Ivor Davies; Robbie Richard Auld; E. Rigby; M. Baes; M. J. Barlow; James J. Bock; M. Bradford; N. Castro-Rodriguez; S. Charlot; D. L. Clements; D. Cormier; E. Dwek; D. Elbaz; M. Galametz; F. Galliano; Walter Kieran Gear; J. Glenn; Haley Louise Gomez; Matthew Joseph Griffin; Sacha Hony; Kate Gudrun Isaak; L. Levenson; N. Lu; S. Madden

The Herschel Reference Survey is a Herschel guaranteed time key project and will be a benchmark study of dust in the nearby universe. The survey will complement a number of other Herschel key projects including large cosmological surveys that trace dust in the distant universe. We will use Herschel to produce images of a statistically-complete sample of 323 galaxies at 250, 350, and 500 μm. The sample is volume-limited, containing sources with distances between 15 and 25 Mpc and flux limits in the K band to minimize the selection effects associated with dust and with young high-mass stars and to introduce a selection in stellar mass. The sample spans the whole range of morphological types (ellipticals to late-type spirals) and environments (from the field to the center of the Virgo Cluster) and as such will be useful for other purposes than our own. We plan to use the survey to investigate (i) the dust content of galaxies as a function of Hubble type, stellar mass, and environment; (ii) the connection between the dust content and composition and the other phases of the interstellar medium; and (iii) the origin and evolution of dust in galaxies. In this article, we describe the goals of the survey, the details of the sample and some of the auxiliary observing programs that we have started to collect complementary data. We also use the available multifrequency data to carry out an analysis of the statistical properties of the sample.


Nature | 2009

Over half of the far-infrared background light comes from galaxies at z ≥ 1.2

Mark J. Devlin; Peter A. R. Ade; Itziar Aretxaga; James J. Bock; Edward L. Chapin; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; Gaelen Marsden; Peter G. Martin; Philip Daniel Mauskopf; Lorenzo Moncelsi; C. B. Netterfield; Henry Ngo; Luca Olmi; Enzo Pascale; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Nicholas Thomas; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald Wiebe

Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 ≤ z ≤ 4, these massive submillimetre galaxies go through a phase characterized by optically obscured star formation at rates several hundred times that in the local Universe. Half of the starlight from this highly energetic process is absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K with spectral energy distributions peaking at 100 μm in the rest frame. At 1 ≤ z ≤ 4, the peak is redshifted to wavelengths between 200 and 500 μm. The cumulative effect of these galaxies is to yield extragalactic optical and far-infrared backgrounds with approximately equal energy densities. Since the initial detection of the far-infrared background (FIRB), higher-resolution experiments have sought to decompose this integrated radiation into the contributions from individual galaxies. Here we report the results of an extragalactic survey at 250, 350 and 500 μm. Combining our results at 500 μm with those at 24 μm, we determine that all of the FIRB comes from individual galaxies, with galaxies at z ≥ 1.2 accounting for 70% of it. As expected, at the longest wavelengths the signal is dominated by ultraluminous galaxies at z > 1.


The Astrophysical Journal | 2009

BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND

Gaelen Marsden; Peter A. R. Ade; James J. Bock; Edward L. Chapin; Mark J. Devlin; Simon R. Dicker; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; Philip Daniel Mauskopf; B. Magnelli; Lorenzo Moncelsi; C. B. Netterfield; Henry Ngo; Luca Olmi; Enzo Pascale; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Nicholas Thomas; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald Wiebe

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has made 1 deg2, deep, confusion-limited maps at three different bands, centered on the Great Observatories Origins Deep Survey South Field. By calculating the covariance of these maps with catalogs of 24 μm sources from the Far-Infrared Deep Extragalactic Legacy Survey, we have determined that the total submillimeter intensities are 8.60 ± 0.59, 4.93 ± 0.34, and 2.27 ± 0.20 nW m–2 sr–1 at 250, 350, and 500 μm, respectively. These numbers are more precise than previous estimates of the cosmic infrared background (CIB) and are consistent with 24 μm-selected galaxies generating the full intensity of the CIB. We find that the fraction of the CIB that originates from sources at z ≥ 1.2 increases with wavelength, with 60% from high-redshift sources at 500 μm. At all BLAST wavelengths, the relative intensity of high-z sources is higher for 24 μm-faint sources than that for 24 μm-bright sources. Galaxies identified as active galactic nuclei (AGNs) by their Infrared Array Camera colors are 1.6-2.6 times brighter than the average population at 250-500 μm, consistent with what is found for X-ray-selected AGNs. BzK-selected galaxies are found to be moderately brighter than typical 24 μm-selected galaxies in the BLAST bands. These data provide high-precision constraints for models of the evolution of the number density and intensity of star-forming galaxies at high redshift.


web science | 2010

The Herschel Multi-Tiered Extragalactic Survey: source extraction and cross-identifications in confusion-dominated SPIRE images

Seb Oliver; Martin Kunz; B. Altieri; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; M. Béthermin; A. W. Blain; James J. Bock; A. Boselli; D. Brisbin; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. Dwek; S. Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox

We present the cross-identification and source photometry techniques used to process Herschel SPIRE imaging taken as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES). Cross-identifications are performed in map-space so as to minimize source-blending effects. We make use of a combination of linear inversion and model selection techniques to produce reliable cross-identification catalogues based on Spitzer MIPS 24-mu m source positions. Testing on simulations and real Herschel observations shows that this approach gives robust results for even the faintest sources (S-250 similar to 10 mJy). We apply our new technique to HerMES SPIRE observations taken as part of the science demonstration phase of Herschel. For our real SPIRE observations, we show that, for bright unconfused sources, our flux density estimates are in good agreement with those produced via more traditional point source detection methods (SUSSEXtractor) by Smith et al. When compared to the measured number density of sources in the SPIRE bands, we show that our method allows the recovery of a larger fraction of faint sources than these traditional methods. However, this completeness is heavily dependent on the relative depth of the existing 24-mu m catalogues and SPIRE imaging. Using our deepest multiwavelength data set in the GOODS-N, we estimate that the use of shallow 24-mu m catalogues in our other fields introduces an incompleteness at faint levels of between 20-40 per cent at 250 mu m.


Monthly Notices of the Royal Astronomical Society | 2010

HerMES: deep galaxy number counts from a P(D) fluctuation analysis of SPIRE Science Demonstration Phase observations

J. Glenn; A. Conley; M. Béthermin; B. Altieri; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; James J. Bock; A. Boselli; V. Buat; N. Castro-Rodríguez; A. Cava; P. Chanial; D. L. Clements; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; T. P. Ellsworth-Bowers; M. Fox; A. Franceschini; Walter Kieran Gear; Matthew Joseph Griffin; M. Halpern; Evanthia Hatziminaoglou; E. Ibar

Dusty, star-forming galaxies contribute to a bright, currently unresolved cosmic far-infrared background. Deep Herschel-Spectral and Photometric Imaging Receiver (SPIRE) images designed to detect and characterize the galaxies that comprise this background are highly confused, such that the bulk lies below the classical confusion limit. We analyse three fields from the Herschel Multi-tiered Extragalactic Survey (HerMES) programme in all three SPIRE bands (250, 350 and 500 μm); parametrized galaxy number count models are derived to a depth of ~2 mJy beam^(−1), approximately four times the depth of previous analyses at these wavelengths, using a probability of deflection [P(D)] approach for comparison to theoretical number count models. Our fits account for 64, 60 and 43 per cent of the far-infrared background in the three bands. The number counts are consistent with those based on individually detected SPIRE sources, but generally inconsistent with most galaxy number count models, which generically overpredict the number of bright galaxies and are not as steep as the P(D)-derived number counts. Clear evidence is found for a break in the slope of the differential number counts at low flux densities. Systematic effects in the P(D) analysis are explored. We find that the effects of clustering have a small impact on the data, and the largest identified systematic error arises from uncertainties in the SPIRE beam.


The Astrophysical Journal | 2012

A redshift survey of Herschel far-infrared selected starbursts and implications for obscured star formation

Caitlin M. Casey; S. Berta; M. Béthermin; James J. Bock; C. Bridge; J. Budynkiewicz; D. Burgarella; Edward L. Chapin; S. C. Chapman; D. L. Clements; A. Conley; Christopher J. Conselice; A. Cooray; D. Farrah; Evanthia Hatziminaoglou; R. J. Ivison; E. Le Floc'h; D. Lutz; G. Magdis; B. Magnelli; Seb Oliver; Mat Page; F. Pozzi; D. Rigopoulou; L. Riguccini; I. G. Roseboom; D. B. Sanders; Douglas Scott; N. Seymour; I. Valtchanov

We present Keck spectroscopic observations and redshifts for a sample of 767 Herschel-SPIRE selected galaxies (HSGs) at 250, 350, and 500 μm, taken with the Keck I Low Resolution Imaging Spectrometer and the Keck II DEep Imaging Multi-Object Spectrograph. The redshift distribution of these SPIRE sources from the Herschel Multitiered Extragalactic Survey peaks at z = 0.85, with 731 sources at z < 2 and a tail of sources out to z ~ 5. We measure more significant disagreement between photometric and spectroscopic redshifts (〈Δz/(1 + z_(spec))〉 = 0.29) than is seen in non-infrared selected samples, likely due to enhanced star formation rates and dust obscuration in infrared-selected galaxies. The infrared data are used to directly measure integrated infrared luminosities and dust temperatures independent of radio or 24 μm flux densities. By probing the dust spectral energy distribution (SED) at its peak, we estimate that the vast majority (72%-83%) of z < 2 Herschel-selected galaxies would drop out of traditional submillimeter surveys at 0.85-1 mm. We find that dust temperature traces infrared luminosity, due in part to the SPIRE wavelength selection biases, and partially from physical effects. As a result, we measure no significant trend in SPIRE color with redshift; if dust temperature were independent of luminosity or redshift, a trend in SPIRE color would be expected. Composite infrared SEDs are constructed as a function of infrared luminosity, showing the increase in dust temperature with luminosity, and subtle change in near-infrared and mid-infrared spectral properties. Moderate evolution in the far-infrared (FIR)/radio correlation is measured for this partially radio-selected sample, with q_(IR) ∝(1 + z)^(–0.30±0.02) at z < 2. We estimate the luminosity function and implied star formation rate density contribution of HSGs at z < 1.6 and find overall agreement with work based on 24 μm extrapolations of the LIRG, ULIRG, and total infrared contributions. This work significantly increased the number of spectroscopically confirmed infrared-luminous galaxies at z » 0 and demonstrates the growing importance of dusty starbursts for galaxy evolution studies and the build-up of stellar mass throughout cosmic time.


The Astrophysical Journal | 2013

HerMES: Cosmic Infrared Background Anisotropies and the Clustering of Dusty Star-Forming Galaxies

M. Viero; L. Wang; M. Zemcov; Graeme E. Addison; A. Amblard; V. Arumugam; H. Aussel; M. Béthermin; James J. Bock; A. Boselli; V. Buat; D. Burgarella; Caitlin M. Casey; D. L. Clements; A. Conley; L. Conversi; A. Cooray; G. De Zotti; C. D. Dowell; D. Farrah; A. Franceschini; J. Glenn; Matthew Joseph Griffin; Evanthia Hatziminaoglou; S. Heinis; E. Ibar; R. J. Ivison; G. Lagache; L. Levenson; L. Marchetti

We present measurements of the auto- and cross-frequency power spectra of the cosmic infrared background (CIB) at 250, 350, and 500 μm (1200, 860, and 600 GHz) from observations totaling ~70 deg2 made with the SPIRE instrument aboard the Herschel Space Observatory. We measure a fractional anisotropy δI/I = 14% ± 4%, detecting signatures arising from the clustering of dusty star-forming galaxies in both the linear (2-halo) and nonlinear (1-halo) regimes; and that the transition from the 2- to 1-halo terms, below which power originates predominantly from multiple galaxies within dark matter halos, occurs at k θ ~ 0.10-0.12 arcmin–1 (l ~ 2160-2380), from 250 to 500 μm. New to this paper is clear evidence of a dependence of the Poisson and 1-halo power on the flux-cut level of masked sources—suggesting that some fraction of the more luminous sources occupy more massive halos as satellites, or are possibly close pairs. We measure the cross-correlation power spectra between bands, finding that bands which are farthest apart are the least correlated, as well as hints of a reduction in the correlation between bands when resolved sources are more aggressively masked. In the second part of the paper, we attempt to interpret the measurements in the framework of the halo model. With the aim of fitting simultaneously with one model the power spectra, number counts, and absolute CIB level in all bands, we find that this is achievable by invoking a luminosity-mass relationship, such that the luminosity-to-mass ratio peaks at a particular halo mass scale and declines toward lower and higher mass halos. Our best-fit model finds that the halo mass which is most efficient at hosting star formation in the redshift range of peak star-forming activity, z ~ 1-3, is log(M peak/M ☉) ~ 12.1 ± 0.5, and that the minimum halo mass to host infrared galaxies is log(M min/M ☉) ~ 10.1 ± 0.6.


Applied Optics | 2002

The relative performance of filled and feedhorn-coupled focal plane architectures

Matthew Joseph Griffin; James J. Bock; Walter Kieran Gear

Modern far-infrared and submillimeter instruments require large-format arrays. We consider the relative performance of filled-array (bare pixel) and feedhorn-coupled architectures for bolometer focal planes. Based on typical array parameters, we quantify the relative observing speeds and comment on the merits of the different architectures. Filled arrays can provide higher mapping speed (by a factor of as much as 3.5) and simpler observing modes at the expense of reduced sensitivity for pointed observations, increased detector numbers, and greater vulnerability to stray light and electromagnetic interference. Taking advantage of the filled-array architecture requires strongly background-limited detectors. At millimeter wavelengths, filled arrays must be surrounded by a sufficiently cold enclosure to minimize the background power from the instrument itself.

Collaboration


Dive into the James J. Bock's collaboration.

Top Co-Authors

Avatar

A. E. Lange

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Cooray

University of California

View shared research outputs
Top Co-Authors

Avatar

J. Glenn

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Halpern

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Mark J. Devlin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie Rex

University of Arizona

View shared research outputs
Researchain Logo
Decentralizing Knowledge