Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James J. Cox is active.

Publication


Featured researches published by James J. Cox.


Nature | 2006

An SCN9A channelopathy causes congenital inability to experience pain.

James J. Cox; Frank Reimann; Adeline K. Nicholas; G Thornton; Emma Roberts; K Springell; Gulshan Karbani; H Jafri; J Mannan; Y Raashid; Lihadh Al-Gazali; H Hamamy; Enza Maria Valente; S Gorman; R Williams; Duncan P. McHale; John N. Wood; Fiona M. Gribble; Christopher Geoffrey Woods

The complete inability to sense pain in an otherwise healthy individual is a very rare phenotype. In three consanguineous families from northern Pakistan, we mapped the condition as an autosomal-recessive trait to chromosome 2q24.3. This region contains the gene SCN9A, encoding the α-subunit of the voltage-gated sodium channel, Nav1.7, which is strongly expressed in nociceptive neurons. Sequence analysis of SCN9A in affected individuals revealed three distinct homozygous nonsense mutations (S459X, I767X and W897X). We show that these mutations cause loss of function of Nav1.7 by co-expression of wild-type or mutant human Nav1.7 with sodium channel β1 and β2 subunits in HEK293 cells. In cells expressing mutant Nav1.7, the currents were no greater than background. Our data suggest that SCN9A is an essential and non-redundant requirement for nociception in humans. These findings should stimulate the search for novel analgesics that selectively target this sodium channel subunit.


Nature Genetics | 2009

A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation

Patrick Tarpey; Raffaella Smith; Erin Pleasance; Annabel Whibley; Sarah Edkins; Claire Hardy; Sarah O'Meara; Calli Latimer; Ed Dicks; Andrew Menzies; Phil Stephens; Matt Blow; Christopher Greenman; Yali Xue; Chris Tyler-Smith; Deborah Thompson; Kristian Gray; Jenny Andrews; Syd Barthorpe; Gemma Buck; Jennifer Cole; Rebecca Dunmore; David Jones; Mark Maddison; Tatiana Mironenko; Rachel Turner; Kelly Turrell; Jennifer Varian; Sofie West; Sara Widaa

Large-scale systematic resequencing has been proposed as the key future strategy for the discovery of rare, disease-causing sequence variants across the spectrum of human complex disease. We have sequenced the coding exons of the X chromosome in 208 families with X-linked mental retardation (XLMR), the largest direct screen for constitutional disease-causing mutations thus far reported. The screen has discovered nine genes implicated in XLMR, including SYP, ZNF711 and CASK reported here, confirming the power of this strategy. The study has, however, also highlighted issues confronting whole-genome sequencing screens, including the observation that loss of function of 1% or more of X-chromosome genes is compatible with apparently normal existence.


Diabetes | 2006

Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene

Juliette Gray; Giles S. H. Yeo; James J. Cox; Jenny Morton; Anna-Lynne R. Adlam; Julia M. Keogh; Jack A. Yanovski; Areeg El Gharbawy; Joan C. Han; Y.C. Loraine Tung; John R. Hodges; F. Lucy Raymond; Stephen O’Rahilly; I. Sadaf Farooqi

The neurotrophin brain-derived neurotrophic factor (BDNF) inhibits food intake, and rodent models of BDNF disruption all exhibit increased food intake and obesity, as well as hyperactivity. We report an 8-year-old girl with hyperphagia and severe obesity, impaired cognitive function, and hyperactivity who harbored a de novo chromosomal inversion, 46,XX,inv(11)(p13p15.3), a region encompassing the BDNF gene. We have identified the proximal inversion breakpoint that lies 850 kb telomeric of the 5′ end of the BDNF gene. The patient’s genomic DNA was heterozygous for a common coding polymorphism in BDNF, but monoallelic expression was seen in peripheral lymphocytes. Serum concentration of BDNF protein was reduced compared with age- and BMI-matched subjects. Haploinsufficiency for BDNF was associated with increased ad libitum food intake, severe early-onset obesity, hyperactivity, and cognitive impairment. These findings provide direct evidence for the role of the neurotrophin BDNF in human energy homeostasis, as well as in cognitive function, memory, and behavior.


Neuron | 2010

A Gain-of-Function Mutation in TRPA1 Causes Familial Episodic Pain Syndrome

Barbara Kremeyer; Francisco Lopera; James J. Cox; Aliakmal Momin; François Rugiero; Steve Marsh; C. Geoffrey Woods; Nicholas Jones; Kathryn J. Paterson; Florence R. Fricker; Andrés Villegas; Natalia Acosta; Nicolás Pineda-Trujillo; Juan D. Ramirez; Julián Zea; Mari-Wyn Burley; Gabriel Bedoya; David L. H. Bennett; John N. Wood; Andres Ruiz-Linares

Summary Human monogenic pain syndromes have provided important insights into the molecular mechanisms that underlie normal and pathological pain states. We describe an autosomal-dominant familial episodic pain syndrome characterized by episodes of debilitating upper body pain, triggered by fasting and physical stress. Linkage and haplotype analysis mapped this phenotype to a 25 cM region on chromosome 8q12–8q13. Candidate gene sequencing identified a point mutation (N855S) in the S4 transmembrane segment of TRPA1, a key sensor for environmental irritants. The mutant channel showed a normal pharmacological profile but altered biophysical properties, with a 5-fold increase in inward current on activation at normal resting potentials. Quantitative sensory testing demonstrated normal baseline sensory thresholds but an enhanced secondary hyperalgesia to punctate stimuli on treatment with mustard oil. TRPA1 antagonists inhibit the mutant channel, promising a useful therapy for this disorder. Our findings provide evidence that variation in the TRPA1 gene can alter pain perception in humans. Video Abstract


Proceedings of the National Academy of Sciences of the United States of America | 2010

Pain perception is altered by a nucleotide polymorphism in SCN9A

Frank Reimann; James J. Cox; Inna Belfer; Luda Diatchenko; Dmitri V. Zaykin; Duncan P. McHale; Joost P. H. Drenth; Feng Dai; Jerry Wheeler; Frances A. Sanders; Linda S. Wood; Tianxia Wu; Jaro Karppinen; Lone Nikolajsen; Minna Männikkö; Mitchell B. Max; Carly Kiselycznyk; Minakshi Poddar; Rene H. M. te Morsche; Shad B. Smith; Dustin G. Gibson; Anthi Kelempisioti; William Maixner; Fiona M. Gribble; C. Geoffrey Woods

The gene SCN9A is responsible for three human pain disorders. Nonsense mutations cause a complete absence of pain, whereas activating mutations cause severe episodic pain in paroxysmal extreme pain disorder and primary erythermalgia. This led us to investigate whether single nucleotide polymorphisms (SNPs) in SCN9A were associated with differing pain perception in the general population. We first genotyped 27 SCN9A SNPs in 578 individuals with a radiographic diagnosis of osteoarthritis and a pain score assessment. A significant association was found between pain score and SNP rs6746030; the rarer A allele was associated with increased pain scores compared to the commoner G allele (P = 0.016). This SNP was then further genotyped in 195 pain-assessed people with sciatica, 100 amputees with phantom pain, 179 individuals after lumbar discectomy, and 205 individuals with pancreatitis. The combined P value for increased A allele pain was 0.0001 in the five cohorts tested (1277 people in total). The two alleles of the SNP rs6746030 alter the coding sequence of the sodium channel Nav1.7. Each was separately transfected into HEK293 cells and electrophysiologically assessed by patch-clamping. The two alleles showed a difference in the voltage-dependent slow inactivation (P = 0.042) where the A allele would be predicted to increase Nav1.7 activity. Finally, we genotyped 186 healthy females characterized by their responses to a diverse set of noxious stimuli. The A allele of rs6746030 was associated with an altered pain threshold and the effect mediated through C-fiber activation. We conclude that individuals experience differing amounts of pain, per nociceptive stimulus, on the basis of their SCN9A rs6746030 genotype.


Nature Genetics | 2009

INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse.

Monique Jacoby; James J. Cox; Stéphanie Gayral; Daniel J. Hampshire; Mohammed Ayub; Marianne Blockmans; Eileen Pernot; Marina V Kisseleva; Philippe Compère; Serge N. Schiffmann; Fanni Gergely; John H. Riley; David Perez-Morga; C. Geoffrey Woods; Stéphane Schurmans

The primary cilium is an antenna-like structure that protrudes from the cell surface of quiescent/differentiated cells and participates in extracellular signal processing. Here, we report that mice deficient for the lipid 5-phosphatase Inpp5e develop a multiorgan disorder associated with structural defects of the primary cilium. In ciliated mouse embryonic fibroblasts, Inpp5e is concentrated in the axoneme of the primary cilium. Inpp5e inactivation did not impair ciliary assembly but altered the stability of pre-established cilia after serum addition. Blocking phosphoinositide 3-kinase (PI3K) activity or ciliary platelet-derived growth factor receptor α (PDGFRα) restored ciliary stability. In human INPP5E, we identified a mutation affecting INPP5E ciliary localization and cilium stability in a family with MORM syndrome, a condition related to Bardet-Biedl syndrome. Together, our results show that INPP5E plays an essential role in the primary cilium by controlling ciliary growth factor and PI3K signaling and stability, and highlight the consequences of INPP5E dysfunction.


Nature Genetics | 2010

WDR62 is associated with the spindle pole and is mutated in human microcephaly

Adeline K. Nicholas; Maryam Khurshid; Julie Désir; Ofélia P. Carvalho; James J. Cox; Gemma Thornton; Rizwana Kausar; Muhammad Ansar; Wasim Ahmad; Alain Verloes; Sandrine Passemard; Jean Paul Misson; Susan Lindsay; Fanni Gergely; William B. Dobyns; Emma Roberts; Marc Abramowicz; C. Geoffrey Woods

Autosomal recessive primary microcephaly (MCPH) is a disorder of neurodevelopment resulting in a small brain. We identified WDR62 as the second most common cause of MCPH after finding homozygous missense and frame-shifting mutations in seven MCPH families. In human cell lines, we found that WDR62 is a spindle pole protein, as are ASPM and STIL, the MCPH7 and MCHP7 proteins. Mutant WDR62 proteins failed to localize to the mitotic spindle pole. In human and mouse embryonic brain, we found that WDR62 expression was restricted to neural precursors undergoing mitosis. These data lend support to the hypothesis that the exquisite control of the cleavage furrow orientation in mammalian neural precursor cell mitosis, controlled in great part by the centrosomes and spindle poles, is critical both in causing MCPH when perturbed and, when modulated, generating the evolutionarily enlarged human brain.


American Journal of Human Genetics | 2006

Quantification of homozygosity in consanguineous individuals with autosomal recessive disease.

C. Geoffrey Woods; James J. Cox; Kelly Springell; Daniel J. Hampshire; Moin D. Mohamed; Martin McKibbin; Rowena Stern; F. Lucy Raymond; Richard Sandford; Saghira Malik Sharif; Gulshan Karbani; Mustaq Ahmed; Jacquelyn Bond; David G. Clayton; Chris F. Inglehearn

Individuals born of consanguineous union have segments of their genomes that are homozygous as a result of inheriting identical ancestral genomic segments through both parents. One consequence of this is an increased incidence of recessive disease within these sibships. Theoretical calculations predict that 6% (1/16) of the genome of a child of first cousins will be homozygous and that the average homozygous segment will be 20 cM in size. We assessed whether these predictions held true in populations that have preferred consanguineous marriage for many generations. We found that in individuals with a recessive disease whose parents were first cousins, on average, 11% of their genomes were homozygous (n = 38; range 5%-20%), with each individual bearing 20 homozygous segments exceeding 3 cM (n = 38; range of number of homozygous segments 7-32), and that the size of the homozygous segment associated with recessive disease was 26 cM (n = 100; range 5-70 cM). These data imply that prolonged parental inbreeding has led to a background level of homozygosity increased approximately 5% over and above that predicted by simple models of consanguinity. This has important clinical and research implications.


American Journal of Human Genetics | 2005

3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome

Lionel Willatt; James J. Cox; John C K Barber; Elisabet Dachs Cabanas; Amanda L. Collins; Dian Donnai; David Fitzpatrick; Eddy Maher; Howard Martin; Josep Parnau; Lesley Pindar; Jacqueline Ramsay; Charles Shaw-Smith; Erik A. Sistermans; Michael Tettenborn; Dorothy Trump; Bert B.A. de Vries; Kate Walker; F. Lucy Raymond

We report the identification of six patients with 3q29 microdeletion syndrome. The clinical phenotype is variable despite an almost identical deletion size. The phenotype includes mild-to-moderate mental retardation, with only slightly dysmorphic facial features that are similar in most patients: a long and narrow face, short philtrum, and high nasal bridge. Autism, gait ataxia, chest-wall deformity, and long and tapering fingers were noted in at least two of six patients. Additional features--including microcephaly, cleft lip and palate, horseshoe kidney and hypospadias, ligamentous laxity, recurrent middle ear infections, and abnormal pigmentation--were observed, but each feature was only found once, in a single patient. The microdeletion is approximately 1.5 Mb in length, with molecular boundaries mapping within the same or adjacent bacterial artificial chromosome (BAC) clones at either end of the deletion in all patients. The deletion encompasses 22 genes, including PAK2 and DLG1, which are autosomal homologues of two known X-linked mental retardation genes, PAK3 and DLG3. The presence of two nearly identical low-copy repeat sequences in BAC clones on each side of the deletion breakpoint suggests that nonallelic homologous recombination is the likely mechanism of disease causation in this syndrome.


American Journal of Human Genetics | 2004

Mutations in the DLG3 Gene Cause Nonsyndromic X-Linked Mental Retardation

Patrick Tarpey; Josep Parnau; Matthew J. Blow; Hayley Woffendin; Graham R. Bignell; Charles Cox; James J. Cox; Helen Davies; Sarah Edkins; Simon Holden; Angelique Korny; Uma Mallya; Jenny Moon; Sarah O’Meara; Adrian Parker; Philip Stephens; Claire Stevens; Jon Teague; Andrew Donnelly; Marie Mangelsdorf; John C. Mulley; Michael Partington; Gillian Turner; Roger E. Stevenson; Charles E. Schwartz; Ian Young; Douglas F. Easton; Martin Bobrow; P. Andrew Futreal; Michael R. Stratton

We have identified truncating mutations in the human DLG3 (neuroendocrine dlg) gene in 4 of 329 families with moderate to severe X-linked mental retardation. DLG3 encodes synapse-associated protein 102 (SAP102), a member of the membrane-associated guanylate kinase protein family. Neuronal SAP102 is expressed during early brain development and is localized to the postsynaptic density of excitatory synapses. It is composed of three amino-terminal PDZ domains, an src homology domain, and a carboxyl-terminal guanylate kinase domain. The PDZ domains interact directly with the NR2 subunits of the NMDA glutamate receptor and with other proteins responsible for NMDA receptor localization, immobilization, and signaling. The mutations identified in this study all introduce premature stop codons within or before the third PDZ domain, and it is likely that this impairs the ability of SAP102 to interact with the NMDA receptor and/or other proteins involved in downstream NMDA receptor signaling pathways. NMDA receptors have been implicated in the induction of certain forms of synaptic plasticity, such as long-term potentiation and long-term depression, and these changes in synaptic efficacy have been proposed as neural mechanisms underlying memory and learning. The disruption of NMDA receptor targeting or signaling, as a result of the loss of SAP102, may lead to altered synaptic plasticity and may explain the intellectual impairment observed in individuals with DLG3 mutations.

Collaboration


Dive into the James J. Cox's collaboration.

Top Co-Authors

Avatar

John N. Wood

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Zhao

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gulshan Karbani

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge