Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James J. Hartman is active.

Publication


Featured researches published by James J. Hartman.


Science | 2011

Cardiac Myosin Activation: A Potential Therapeutic Approach for Systolic Heart Failure

Fady Malik; James J. Hartman; Kathleen A. Elias; Bradley P. Morgan; Hector Rodriguez; Katjuša Brejc; Robert L. Anderson; Sandra H. Sueoka; Kenneth H. Lee; Jeffrey T. Finer; Roman Sakowicz; Ramesh Baliga; D. R. Cox; Marc Garard; Guillermo Godinez; Raja Kawas; Erica Anne Kraynack; David Lenzi; Pu Ping Lu; Alexander Ramon Muci; Congrong Niu; Xiangping Qian; Daniel W. Pierce; Maria V. Pokrovskii; Ion Suehiro; Sheila Sylvester; Todd Tochimoto; Corey Valdez; Wenyue Wang; Tatsuo Katori

A small molecule improves cardiac function by accelerating the transition of myosin into a force-producing state. Decreased cardiac contractility is a central feature of systolic heart failure. Existing drugs increase cardiac contractility indirectly through signaling cascades but are limited by their mechanism-related adverse effects. To avoid these limitations, we previously developed omecamtiv mecarbil, a small-molecule, direct activator of cardiac myosin. Here, we show that it binds to the myosin catalytic domain and operates by an allosteric mechanism to increase the transition rate of myosin into the strongly actin-bound force-generating state. Paradoxically, it inhibits adenosine 5′-triphosphate turnover in the absence of actin, which suggests that it stabilizes an actin-bound conformation of myosin. In animal models, omecamtiv mecarbil increases cardiac function by increasing the duration of ejection without changing the rates of contraction. Cardiac myosin activation may provide a new therapeutic approach for systolic heart failure.


Cell | 1998

Katanin, a Microtubule-Severing Protein, Is a Novel AAA ATPase that Targets to the Centrosome Using a WD40-Containing Subunit

James J. Hartman; Jeff Mahr; Karen McNally; Katsuya Okawa; Akihiro Iwamatsu; Susan Thomas; Sarah Cheesman; John E. Heuser; Ronald D. Vale; Francis J. McNally

Microtubule disassembly at centrosomes is involved in mitotic spindle function. The microtubule-severing protein katanin, a heterodimer of 60 and 80 kDa subunits, was previously purified and shown to localize to centrosomes in vivo. Here we report the sequences and activities of the katanin subunits. p60 is a new member of the AAA family of ATPases, and we show that expressed p60 has microtubule-stimulated ATPase and microtubule-severing activities in the absence of p80. p80 is a novel protein containing WD40 repeats, which are frequently involved in protein-protein interactions. The p80 WD40 domain does not participate in p60 dimerization, but localizes to centrosomes in transfected mammalian cells. These results indicate katanins activities are segregated into a subunit (p60) that possesses enzymatic activity and a subunit (p80) that targets the enzyme to the centrosome.


Biochemistry | 2008

Mechanism of Inhibition of Human KSP by Ispinesib

Latesh Lad; Lusong Luo; Jeffrey D. Carson; Kenneth W. Wood; James J. Hartman; Robert A. Copeland; Roman Sakowicz

KSP, also known as HsEg5, is a kinesin that plays an essential role in the formation of a bipolar mitotic spindle and is required for cell cycle progression through mitosis. Ispinesib is the first potent, highly specific small-molecule inhibitor of KSP tested for the treatment of human disease. This novel anticancer agent causes mitotic arrest and growth inhibition in several human tumor cell lines and is currently being tested in multiple phase II clinical trials. In this study we have used steady-state and pre-steady-state kinetic assays to define the mechanism of KSP inhibition by ispinesib. Our data show that ispinesib alters the ability of KSP to bind to microtubules and inhibits its movement by preventing the release of ADP without preventing the release of the KSP-ADP complex from the microtubule. This type of inhibition is consistent with the physiological effect of ispinesib on cells, which is to prevent KSP-driven mitotic spindle pole separation. A comparison of ispinesib to monastrol, another small-molecule inhibitor of KSP, reveals that both inhibitors share a common mode of inhibition.


Nature Medicine | 2012

Activation of fast skeletal muscle troponin as a potential therapeutic approach for treating neuromuscular diseases

Alan Russell; James J. Hartman; Aaron C. Hinken; Alexander Ramon Muci; Raja Kawas; Lena Driscoll; Guillermo Godinez; Kenneth H. Lee; David Marquez; William F. Browne; Michael M. Chen; David Clarke; Scott Collibee; Marc Garard; Richard Hansen; Zhiheng Jia; Pu Ping Lu; Hector Rodriguez; Khalil G. Saikali; Julia Schaletzky; Vipin Vijayakumar; Daniel L. Albertus; Dennis R. Claflin; David J. Morgans; Bradley P. Morgan; Fady Malik

Limited neural input results in muscle weakness in neuromuscular disease because of a reduction in the density of muscle innervation, the rate of neuromuscular junction activation or the efficiency of synaptic transmission. We developed a small-molecule fast-skeletal–troponin activator, CK-2017357, as a means to increase muscle strength by amplifying the response of muscle when neural input is otherwise diminished secondary to neuromuscular disease. Binding selectively to the fast-skeletal–troponin complex, CK-2017357 slows the rate of calcium release from troponin C and sensitizes muscle to calcium. As a consequence, the force-calcium relationship of muscle fibers shifts leftwards, as does the force-frequency relationship of a nerve-muscle pair, so that CK-2017357 increases the production of muscle force in situ at sub-maximal nerve stimulation rates. Notably, we show that sensitization of the fast-skeletal–troponin complex to calcium improves muscle force and grip strength immediately after administration of single doses of CK-2017357 in a model of the neuromuscular disease myasthenia gravis. Troponin activation may provide a new therapeutic approach to improve physical activity in diseases where neuromuscular function is compromised.


ACS Medicinal Chemistry Letters | 2010

Discovery of Omecamtiv Mecarbil the First, Selective, Small Molecule Activator of Cardiac Myosin

Bradley P. Morgan; Alexander Ramon Muci; Pu-Ping Lu; Xiangping Qian; Todd Tochimoto; Whitney W. Smith; Marc Garard; Erica Anne Kraynack; Scott Collibee; Ion Suehiro; Adam Lewis Tomasi; S. Corey Valdez; Wenyue Wang; Hong Jiang; James J. Hartman; Hector Rodriguez; Raja Kawas; Sheila Sylvester; Kathleen A. Elias; Guillermo Godinez; Kenneth H. Lee; Robert L. Anderson; Sandra H. Sueoka; Donghong Xu; Zhengping Wang; Nebojsa Djordjevic; Fady Malik; David J. Morgans

We report the design, synthesis, and optimization of the first, selective activators of cardiac myosin. Starting with a poorly soluble, nitro-aromatic hit compound (1), potent, selective, and soluble myosin activators were designed culminating in the discovery of omecamtiv mecarbil (24). Compound 24 is currently in clinical trials for the treatment of systolic heart failure.


Journal of Pharmacology and Experimental Therapeutics | 2015

The Small-Molecule Fast Skeletal Troponin Activator, CK-2127107, Improves Exercise Tolerance in a Rat Model of Heart Failure

Darren T. Hwee; Adam R. Kennedy; James J. Hartman; Julie Ryans; Nickie Durham; Fady Malik; Jeffrey R. Jasper

Heart failure–mediated skeletal myopathy, which is characterized by muscle atrophy and muscle metabolism dysfunction, often manifests as dyspnea and limb muscle fatigue. We have previously demonstrated that increasing Ca2+ sensitivity of the sarcomere by a small-molecule fast skeletal troponin activator improves skeletal muscle force and exercise performance in healthy rats and models of neuromuscular disease. The objective of this study was to investigate the effect of a novel fast skeletal troponin activator, CK-2127107 (2-aminoalkyl-5-N-heteroarylpyrimidine), on skeletal muscle function and exercise performance in rats exhibiting heart failure–mediated skeletal myopathy. Rats underwent a left anterior descending coronary artery ligation, resulting in myocardial infarction and a progressive decline in cardiac function [left anterior descending coronary artery heart failure (LAD-HF)]. Compared with sham-operated control rats, LAD-HF rat hindlimb and diaphragm muscles exhibited significant muscle atrophy. Fatigability was increased during repeated in situ isokinetic plantar flexor muscle contractions. CK-2127107 produced a leftward shift in the force-Ca2+ relationship of skinned, single diaphragm, and extensor digitorum longus fibers. Exercise performance, which was assessed by rotarod running, was lower in vehicle-treated LAD-HF rats than in sham controls (116 ± 22 versus 193 ± 31 seconds, respectively; mean ± S.E.M.; P = 0.04). In the LAD-HF rats, a single oral dose of CK-2127107 (10 mg/kg p.o.) increased running time compared with vehicle treatment (283 ± 47 versus 116 ± 22 seconds; P = 0.0004). In summary, CK-2127107 substantially increases exercise performance in this heart failure model, suggesting that modulation of skeletal muscle function by a fast skeletal troponin activator may be a useful therapeutic in heart failure–associated exercise intolerance.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Highly selective inhibition of myosin motors provides the basis of potential therapeutic application.

Serena Sirigu; James J. Hartman; Vicente José Planelles-Herrero; Virginie Ropars; Sheila Clancy; Xi Wang; Grace Chuang; Xiangping Qian; Pu-Ping Lu; Edward G. Barrett; Karin Rudolph; Christopher Royer; Bradley P. Morgan; Enrico A. Stura; Fady Malik; Anne Houdusse

Significance Defects in myosin function are linked to a number of widespread and debilitating diseases, including asthma, chronic obstructive pulmonary disease, and hypertrophic cardiomyopathy. We report here the discovery of an allosteric site that modulates myosin motor function with high specificity that opens the path toward new therapeutic solutions. Identification of specific antimyosin drugs that significantly alter a motor’s function is an imperative first step toward the development of targeted and effective treatments for such diseases. Highly specific drugs against different members of the superfamily would also provide exquisite tools to investigate in cells their functional role. Additionally, detailed, high-resolution studies of the interaction of drugs with their myosin targets provide insights into the molecular mechanism of motor function. Direct inhibition of smooth muscle myosin (SMM) is a potential means to treat hypercontractile smooth muscle diseases. The selective inhibitor CK-2018571 prevents strong binding to actin and promotes muscle relaxation in vitro and in vivo. The crystal structure of the SMM/drug complex reveals that CK-2018571 binds to a novel allosteric pocket that opens up during the “recovery stroke” transition necessary to reprime the motor. Trapped in an intermediate of this fast transition, SMM is inhibited with high selectivity compared with skeletal muscle myosin (IC50 = 9 nM and 11,300 nM, respectively), although all of the binding site residues are identical in these motors. This structure provides a starting point from which to design highly specific myosin modulators to treat several human diseases. It further illustrates the potential of targeting transition intermediates of molecular machines to develop exquisitely selective pharmacological agents.


Nature Communications | 2017

Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil.

Vicente José Planelles-Herrero; James J. Hartman; Julien Robert-Paganin; Fady Malik; Anne Houdusse

Omecamtiv mecarbil is a selective, small-molecule activator of cardiac myosin that is being developed as a potential treatment for heart failure with reduced ejection fraction. Here we determine the crystal structure of cardiac myosin in the pre-powerstroke state, the most relevant state suggested by kinetic studies, both with (2.45 Å) and without (3.10 Å) omecamtiv mecarbil bound. Omecamtiv mecarbil does not change the motor mechanism nor does it influence myosin structure. Instead, omecamtiv mecarbil binds to an allosteric site that stabilizes the lever arm in a primed position resulting in accumulation of cardiac myosin in the primed state prior to onset of cardiac contraction, thus increasing the number of heads that can bind to the actin filament and undergo a powerstroke once the cardiac cycle starts. The mechanism of action of omecamtiv mecarbil also provides insights into uncovering how force is generated by molecular motors.Omecamtiv mecarbil (OM) is a cardiac myosin activator that is currently in clinical trials for heart failure treatment. Here, the authors give insights into its mode of action and present the crystal structure of OM bound to bovine cardiac myosin, which shows that OM stabilizes the pre-powerstroke state of myosin.


The Journal of Physiology | 2017

The Ca2+ sensitizer CK‐2066260 increases myofibrillar Ca2+ sensitivity and submaximal force selectively in fast skeletal muscle

Darren T. Hwee; Arthur J. Cheng; James J. Hartman; Aaron C. Hinken; Kenneth H. Lee; Nickie Durham; Alan J. Russell; Fady Malik; Håkan Westerblad; Jeffrey R. Jasper

We report that the small molecule CK‐2066260 selectively slows the off‐rate of Ca2+ from fast skeletal muscle troponin, leading to increased myofibrillar Ca2+ sensitivity in fast skeletal muscle. Rodents dosed with CK‐2066260 show increased hindlimb muscle force and power in response to submaximal rates of nerve stimulation in situ. CK‐2066260 has no effect on free cytosolic [Ca2+] during contractions of isolated muscle fibres. We conclude that fast skeletal muscle troponin sensitizers constitute a potential therapy to address an unmet need of improving muscle function in conditions of weakness and premature muscle fatigue.


ACS Medicinal Chemistry Letters | 2018

Discovery of Tirasemtiv, the First Direct Fast Skeletal Muscle Troponin Activator

Scott Collibee; Gustave Bergnes; Alexander Ramon Muci; William F. Browne; Marc Garard; Aaron C. Hinken; Alan J. Russell; Ion Suehiro; James J. Hartman; Raja Kawas; Pu-Ping Lu; Kenneth H. Lee; David Marquez; Matthew Tomlinson; Donghong Xu; Adam D. Kennedy; Darren Hwee; Julia Schaletzky; Kwan Leung; Fady Malik; David J. Morgans; Bradley P. Morgan

The identification and optimization of the first activators of fast skeletal muscle are reported. Compound 1 was identified from high-throughput screening (HTS) and subsequently found to improve muscle function via interaction with the troponin complex. Optimization of 1 for potency, metabolic stability, and physical properties led to the discovery of tirasemtiv (25), which has been extensively characterized in clinical trials for the treatment of amyotrophic lateral sclerosis.

Collaboration


Dive into the James J. Hartman's collaboration.

Top Co-Authors

Avatar

Fady Malik

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roman Sakowicz

University of California

View shared research outputs
Top Co-Authors

Avatar

Alan J. Russell

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge