Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James J. Hsieh is active.

Publication


Featured researches published by James J. Hsieh.


Molecular and Cellular Biology | 1996

Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2.

James J. Hsieh; T. Henkel; P. Salmon; E. Robey; M. G. Peterson; S. D. Hayward

The Notch/Lin-12/Glp-1 receptor family participates in cell-cell signaling events that influence cell fate decisions. Although several Notch homologs and receptor ligands have been identified, the nuclear events involved in this pathway remain incompletely understood. A truncated form of Notch, consisting only of the intracellular domain (NotchIC), localizes to the nucleus and functions as an activated receptor. Using both an in vitro binding assay and a cotransfection assay based on the two-hybrid principle, we show that mammalian NotchIC interacts with the transcriptional repressor CBF1, which is the human homolog of Drosophila Suppressor of Hairless. Cotransfection assays using segments of mouse NotchIC and CBF1 demonstrated that the N-terminal 114-amino-acid region of mouse NotchIC contains the CBF1 interactive domain and that the cdc10/ankyrin repeats are not essential for this interaction. This result was confirmed in immunoprecipation assays in which the N-terminal 114-amino-acid segment of NotchIC, but not the ankyrin repeat region, coprecipitated with CBF1. Mouse NotchIC itself is targeted to the transcriptional repression domain (aa179 to 361) of CBF1. Furthermore, transfection assays in which mouse NotchIC was targeted through Gal4-CBF1 or through endogenous cellular CBF1 indicated that NotchIC transactivates gene expression via CBF1 tethering to DNA. Transactivation by NotchIC occurs partially through abolition of CBF1-mediated repession. This same mechanism is used by Epstein-Barr virus EBNA2. Thus, mimicry of Notch signal transduction is involved in Epstein-Barr virus-driven immortalization.


Molecular Cell | 2009

Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis.

Hyungjin Kim; Ho-Chou Tu; Decheng Ren; Osamu Takeuchi; John R. Jeffers; Gerard P. Zambetti; James J. Hsieh; Emily H. Cheng

While activation of BAX/BAK by BH3-only molecules (BH3s) is essential for mitochondrial apoptosis, the underlying mechanisms remain unsettled. Here we demonstrate that BAX undergoes stepwise structural reorganization leading to mitochondrial targeting and homo-oligomerization. The alpha1 helix of BAX keeps the alpha9 helix engaged in the dimerization pocket, rendering BAX as a monomer in cytosol. The activator BH3s, tBID/BIM/PUMA, attack and expose the alpha1 helix of BAX, resulting in secondary disengagement of the alpha9 helix and thereby mitochondrial insertion. Activator BH3s remain associated with the N-terminally exposed BAX through the BH1 domain to drive homo-oligomerization. BAK, an integral mitochondrial membrane protein, has bypassed the first activation step, explaining why its killing kinetics are faster than those of BAX. Furthermore, death signals initiated at ER induce BIM and PUMA to activate mitochondrial apoptosis. Accordingly, deficiency of Bim/Puma impedes ER stress-induced BAX/BAK activation and apoptosis. Our study provides mechanistic insights regarding the spatiotemporal execution of BAX/BAK-governed cell death.


Science | 2010

BID, BIM, and PUMA Are Essential for Activation of the BAX- and BAK-Dependent Cell Death Program

Decheng Ren; Ho-Chou Tu; Hyungjin Kim; Gary X. Wang; Gregory R. Bean; Osamu Takeuchi; John R. Jeffers; Gerard P. Zambetti; James J. Hsieh; Emily H. Cheng

Deadly Trio The proteins BAX and BAK act as a key decision point, regulating apoptosis by controlling the permeability of the mitochondrial outer membrane. Evidence has been presented for two mechanisms of activation of BAX and BAK: an indirect mechanism where proapoptotic proteins neutralize the antiapoptotic effects of the protein BCL-2 and its relatives; or direct activation of BAX and BAK by BIM, BID, or PUMA. Analysis of the situation in vivo is complicated by the overlapping function of BIM, BID, and PUMA. Ren et al. (p. 1390; see the Perspective by Martin) thus analyzed triple-knockout mice lacking BIM, BID, and PUMA. Apoptosis during mouse development required a direct effect of one of these proteins to activate BAX or BAK, thereby promoting cell death. Proapoptotic proteins act directly on mitochondrial “gatekeeper” proteins to initiate apoptotic events during mouse development. Although the proteins BAX and BAK are required for initiation of apoptosis at the mitochondria, how BAX and BAK are activated remains unsettled. We provide in vivo evidence demonstrating an essential role of the proteins BID, BIM, and PUMA in activating BAX and BAK. Bid, Bim, and Puma triple-knockout mice showed the same developmental defects that are associated with deficiency of Bax and Bak, including persistent interdigital webs and imperforate vaginas. Genetic deletion of Bid, Bim, and Puma prevented the homo-oligomerization of BAX and BAK, and thereby cytochrome c–mediated activation of caspases in response to diverse death signals in neurons and T lymphocytes, despite the presence of other BH3-only molecules. Thus, many forms of apoptosis require direct activation of BAX and BAK at the mitochondria by a member of the BID, BIM, or PUMA family of proteins.


Molecular and Cellular Biology | 2000

SKIP, a CBF1-Associated Protein, Interacts with the Ankyrin Repeat Domain of NotchIC To Facilitate NotchIC Function

S. Zhou; Masahiro Fujimuro; James J. Hsieh; L. Chen; Alison Miyamoto; Gerry Weinmaster; S. D. Hayward

ABSTRACT Notch proteins are transmembrane receptors that mediate intercell communication and direct individual cell fate decisions. The activated intracellular form of Notch, NotchIC, translocates to the nucleus, where it targets the DNA binding protein CBF1. CBF1 mediates transcriptional repression through the recruitment of an SMRT-histone deacetylase-containing corepressor complex. We have examined the mechanism whereby NotchIC overcomes CBF1-mediated transcriptional repression. We identified SKIP (Ski-interacting protein) as a CBF1 binding protein in a yeast two-hybrid screen. Both CBF1 and SKIP are highly conserved evolutionarily, and the SKIP-CBF1 interaction is also conserved in assays using the Caenorhabditis elegans andDrosophila melanogaster SKIP homologs. Protein-protein interaction assays demonstrated interaction between SKIP and the corepressor SMRT. More surprisingly, SKIP also interacted with NotchIC. The SMRT and NotchIC interactions were mutually exclusive. In competition binding experiments SMRT displaced NotchIC from CBF1 and from SKIP. Contact with SKIP is required for biological activity of NotchIC. A mutation in the fourth ankyrin repeat that abolished Notch signal transduction did not affect interaction with CBF1 but abolished interaction with SKIP. Further, NotchIC was unable to block muscle cell differentiation in myoblasts expressing antisense SKIP. The results suggest a model in which NotchIC activates responsive promoters by competing with the SMRT-corepressor complex for contacts on both CBF1 and SKIP.


Cell | 2003

Taspase1: A threonine aspartase required for cleavage of MLL and proper HOX gene expression

James J. Hsieh; Emily H. Cheng; Stanley J. Korsmeyer

The Mixed-Lineage Leukemia gene (MLL/HRX/ALL1) encodes a large nuclear protein homologous to Drosophila trithorax that is required for the maintenance of HOX gene expression. MLL is cleaved at two conserved sites generating N320 and C180 fragments, which heterodimerize to stabilize the complex and confer its subnuclear destination. Here, we purify and clone the protease responsible for cleaving MLL. We entitle it Taspase1 as it initiates a class of endopeptidases that utilize an N-terminal threonine as the active site nucleophile to proteolyze polypeptide substrates following aspartate. Taspase1 proenzyme is intramolecularly proteolyzed generating an active 28 kDa alpha/22 kDa beta heterodimer. RNAi-mediated knockdown of Taspase1 results in the appearance of unprocessed MLL and the loss of proper HOX gene expression. Taspase1 coevolved with MLL/trithorax as Arthropoda and Chordata emerged from Metazoa suggesting that Taspase1 originated to regulate complex segmental body plans in higher organisms.


Molecular and Cellular Biology | 2003

Proteolytic Cleavage of MLL Generates a Complex of N- and C-Terminal Fragments That Confers Protein Stability and Subnuclear Localization

James J. Hsieh; Patricia Ernst; Hediye Erdjument-Bromage; Paul Tempst; Stanley J. Korsmeyer

ABSTRACT The mixed-lineage leukemia gene (MLL, ALL1, HRX) encodes a 3,969-amino-acid nuclear protein homologous to Drosophila trithorax and is required to maintain proper Hox gene expression. Chromosome translocations in human leukemia disrupt MLL (11q23), generating chimeric proteins between the N terminus of MLL and multiple translocation partners. Here we report that MLL is normally cleaved at two conserved sites (D/GADD and D/GVDD) and that mutation of these sites abolishes the proteolysis. MLL cleavage generates N-terminal p320 (N320) and C-terminal p180 (C180) fragments, which form a stable complex that localizes to a subnuclear compartment. The FYRN domain of N320 directly interacts with the FYRC and SET domains of C180. Disrupting the interaction between N320 and C180 leads to a marked decrease in the level of N320 and a redistribution of C180 to a diffuse nuclear pattern. These data suggest a model in which a dynamic post-cleavage association confers stability to N320 and correct nuclear sublocalization of the complex, to control the availability of N320 for target genes. This predicts that MLL fusion proteins of leukemia which would lose the ability to complex with C180 have their stability conferred instead by the fusion partners, thus providing one mechanism for altered target gene expression.


Clinical Cancer Research | 2013

Adverse Outcomes in Clear Cell Renal Cell Carcinoma with Mutations of 3p21 Epigenetic Regulators BAP1 and SETD2 : A Report by MSKCC and the KIRC TCGA Research Network

A. Ari Hakimi; Irina Ostrovnaya; Boris Reva; Nikolaus Schultz; Ying-Bei Chen; Mithat Gonen; Han Liu; Shugaku Takeda; Martin H. Voss; Satish K. Tickoo; Victor E. Reuter; Paul Russo; Emily H. Cheng; Chris Sander; Robert J. Motzer; James J. Hsieh

Purpose: To investigate the impact of newly identified chromosome 3p21 epigenetic tumor suppressors PBRM1, SETD2, and BAP1 on cancer-specific survival (CSS) of 609 patients with clear cell renal cell carcinoma (ccRCC) from 2 distinct cohorts. Experimental Design: Select sequencing on 3p tumor suppressors of 188 patients who underwent resection of primary ccRCC at the Memorial Sloan-Kettering Cancer Center (MSKCC) was conducted to interrogate the genotype–phenotype associations. These findings were compared with analyses of the genomic and clinical dataset from our nonoverlapping The Cancer Genome Atlas (TCGA) cohort of 421 patients with primary ccRCC. Results: 3p21 tumor suppressors are frequently mutated in both the MSKCC (PBRM1, 30.3%; SETD2, 7.4%; BAP1, 6.4%) and the TCGA (PBRM1, 33.5%; SETD2, 11.6%; BAP1, 9.7%) cohorts. BAP1 mutations are associated with worse CSS in both cohorts [MSKCC, P = 0.002; HR 7.71; 95% confidence interval (CI)2.08–28.6; TCGA, P = 0.002; HR 2.21; 95% CI 1.35–3.63]. SETD2 are associated with worse CSS in the TCGA cohort (P = 0.036; HR 1.68; 95% CI 1.04–2.73). On the contrary, PBRM1 mutations, the second most common gene mutations of ccRCC, have no impact on CSS. Conclusion: The chromosome 3p21 locus harbors 3 frequently mutated ccRCC tumor suppressor genes. BAP1 and SETD2 mutations (6%–12%) are associated with worse CSS, suggesting their roles in disease progression. PBRM1 mutations (30%–34%) do not impact CSS, implicating its principal role in the tumor initiation. Future efforts should focus on therapeutic interventions and further clinical, pathologic, and molecular interrogation of this novel class of tumor suppressors. Clin Cancer Res; 19(12); 3259–67. ©2013 AACR.


Journal of Neuroscience Research | 2002

A secreted Delta1‐Fc fusion protein functions both as an activator and inhibitor of Notch1 signaling

Carol Hicks; Ena Ladi; Claire E. Lindsell; James J. Hsieh; S. Diane Hayward; Andres Collazo; Gerry Weinmaster

Signaling induced through interactions between DSL (Delta, serrate, LAG‐2) ligand‐signaling cells and Notch‐responding cells influences the developmental fate of a wide variety of invertebrate and vertebrate cell types. Consistently with a requirement for direct cell–cell interactions, secreted DSL ligands expressed in flies do not appear to activate Notch signaling but rather produce phenotypes reminiscent of losses in Notch signaling. In contrast, secreted DSL ligands expressed in Caenorhabditis elegans or supplied to mammalian cells in culture produce effects indicative of Notch activation. In fact, engineered secreted DSL ligands have been used to study Notch signaling in neurogenesis, gliogenesis, hematopoeisis, neurite morphogenesis and ligand‐induced nuclear translocation of the Notch intracellular domain. Using a recombinant, secreted form of the DSL ligand Delta1, we found that antibody‐induced oligomerization (termed “clustering”) was required for this soluble ligand to bind specifically to Notch1‐expressing cells, undergo internalization, and activate downstream signaling. Interestingly, clustering with either limiting or excess antibody led to ligand binding in the absence of Notch signaling, indicating that ligand binding is necessary but not sufficient for activation of Notch signaling. Moreover, such antibody clustering conditions blocked Notch1 signaling induced by membrane‐bound DSL ligands. We propose that multimerization influences whether ligand binding to Notch results in activation or inhibition of downstream signaling and suggest that differences in ligand presentation might account for why secreted forms of DSL ligands have been reported to function as agonists and antagonists of Notch signal transduction.


European Urology | 2013

Clinical and Pathologic Impact of Select Chromatin-modulating Tumor Suppressors in Clear Cell Renal Cell Carcinoma

A. Ari Hakimi; Ying-Bei Chen; James Wren; Mithat Gonen; Omar Abdel-Wahab; Adriana Heguy; Han Liu; Shugaku Takeda; Satish K. Tickoo; Victor E. Reuter; Martin H. Voss; Robert J. Motzer; Jonathan A. Coleman; Emily H. Cheng; Paul Russo; James J. Hsieh

BACKGROUND Historically, VHL was the only frequently mutated gene in clear cell renal cell carcinoma (ccRCC), with conflicting clinical relevance. Recent sequencing efforts have identified several novel frequent mutations of histone modifying and chromatin remodeling genes in ccRCC including PBRM1, SETD2, BAP1, and KDM5C. PBRM1, SETD2, and BAP1 are located in close proximity to VHL within a commonly lost (approximately 90%) 3p locus. To date, the clinical and pathologic significance of mutations in these novel candidate tumor suppressors is unknown. OBJECTIVE To determine the frequency of and render the first clinical and pathologic outcome associated with mutations of these novel candidate tumor suppressors in ccRCC. DESIGN, SETTING, AND PARTICIPANTS Targeted sequencing was performed in 185 ccRCCs and matched normal tissues from a single institution. Pathologic features, baseline patient characteristics, and follow-up data were recorded. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The linkage between mutations and clinical and pathologic outcomes was interrogated with the Fisher exact test (for stage and Fuhrman nuclear grade) and the permutation log-rank test (for cancer-specific survival [CSS]). RESULTS AND LIMITATIONS PBRM1, BAP1, SETD2, and KDM5C are mutated at 29%, 6%, 8%, and 8%, respectively. Tumors with mutations in PBRM1 or any of BAP1, SETD2, or KDM5C (19%) are more likely to present with stage III disease or higher (p = 0.01 and p = 0.001, respectively). Small tumors (<4 cm) with PBRM1 mutations are more likely to exhibit stage III pathologic features (odds ratio: 6.4; p = 0.001). BAP1 mutations tend to occur in Fuhrman grade III-IV tumors (p = 0.052) and are associated with worse CSS (p = 0.01). Clinical outcome data are limited by the number of events. CONCLUSIONS Most mutations of chromatin modulators discovered in ccRCC are loss of function, associated with advanced stage, grade, and possibly worse CSS. Further studies validating the clinical impact of these novel mutations and future development of therapeutics remedying these tumor suppressors are warranted.


Clinical Cancer Research | 2014

Tumor Genetic Analyses of Patients with Metastatic Renal Cell Carcinoma and Extended Benefit from mTOR Inhibitor Therapy

Martin H. Voss; A. Ari Hakimi; Can G. Pham; A. Rose Brannon; Ying-Bei Chen; Luis F. Cunha; Oguz Akin; Han Liu; Shugaku Takeda; Sasinya N. Scott; Nicholas D. Socci; Agnes Viale; Nikolaus Schultz; Chris Sander; Victor E. Reuter; Paul Russo; Emily H. Cheng; Robert J. Motzer; Michael F. Berger; James J. Hsieh

Purpose: Rapalogs are allosteric mTOR inhibitors and approved agents for advanced kidney cancer. Reports of clonal heterogeneity in this disease challenge the concept of targeted monotherapy, yet a small subset of patients derives extended benefit. Our aim was to analyze such outliers and explore the genomic background of extreme rapalog sensitivity in the context of intratumor heterogeneity. Experimental Design: We analyzed archived tumor tissue of 5 patients with renal cell carcinoma, who previously achieved durable disease control with rapalogs (median duration, 28 months). DNA was extracted from spatially separate areas of primary tumors and metastases. Custom target capture and ultradeep sequencing was used to identify alterations across 230 target genes. Whole-exome sequence analysis was added to investigate genes beyond this original target list. Results: Five long-term responders contributed 14 specimens to explore clonal heterogeneity. Genomic alterations with activating effect on mTOR signaling were detected in 11 of 14 specimens, offering plausible explanation for exceptional treatment response through alterations in two genes (TSC1 and MTOR). In two subjects, distinct yet functionally convergent alterations activated the mTOR pathway in spatially separate sites. In 1 patient, concurrent genomic events occurred in two separate pathway components across different tumor regions. Conclusions: Analysis of outlier cases can facilitate identification of potential biomarkers for targeted agents, and we implicate two genes as candidates for further study in this class of drugs. The previously reported phenomenon of clonal convergence can occur within a targetable pathway which might have implications for biomarker development beyond this disease and this class of agents. Clin Cancer Res; 20(7); 1955–64. ©2014 AACR.

Collaboration


Dive into the James J. Hsieh's collaboration.

Top Co-Authors

Avatar

A. Ari Hakimi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Paul Russo

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Robert J. Motzer

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Martin H. Voss

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Emily H. Cheng

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jonathan A. Coleman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Victor E. Reuter

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Brandon J. Manley

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Darren R. Feldman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Almedina Redzematovic

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge