Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James J. Lai is active.

Publication


Featured researches published by James J. Lai.


Journal of Controlled Release | 2013

Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction.

Ming Yao Chang; Yu Jen Yang; Chih Han Chang; Alan C.L. Tang; Wei Yin Liao; Fong-Yu Cheng; Chen-Sheng Yeh; James J. Lai; Patrick S. Stayton; Patrick C.H. Hsieh

Recent developments in nanotechnology have created considerable potential toward diagnosis and cancer therapy. In contrast, the use of nanotechnology in tissue repair or regeneration remains largely unexplored. We hypothesized that intramyocardial injection of insulin-like growth factor (IGF)-1-complexed poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (PLGA-IGF-1 NPs) increases IGF-1 retention, induces Akt phosphorylation, and provides early cardioprotection after acute myocardial infarction (MI). We synthesized 3 different sizes of PLGA particles (60 nm, 200 nm, and 1 μm) which were complexed with IGF-1 using electrostatic force to preserve the biological function of IGF-1. Afterward, we injected PLGA-IGF-1 NPs in the heart after MI directly. Compared with the other two larger particles, the 60 nm-sized PLGA-IGF-1 NPs carried more IGF-1 and induced more Akt phosphorylation in cultured cardiomyocytes. PLGA-IGF-1 NPs also prolonged Akt activation in cardiomyocytes up to 24h and prevented cardiomyocyte apoptosis induced by doxorubicin in a dose-dependent manner. In vivo, PLGA-IGF-1 NP treatment significantly retained more IGF-1 in the myocardium than the IGF-1 alone treatment at 2, 6, 8, and 24 h. Akt phosphorylation was detected in cardiomyocytes 24h post-MI only in hearts receiving PLGA-IGF-1 NP treatment, but not in hearts receiving injection of PBS, IGF-1 or PLGA NPs. Importantly, a single intramyocardial injection of PLGA-IGF-1 NPs was sufficient to prevent cardiomyocyte apoptosis (P<0.001), reduce infarct size (P<0.05), and improve left ventricle ejection fraction (P<0.01) 21 days after experimental MI in mice. Our results not only demonstrate the potential of nanoparticle-based technology as a new approach to treating MI, but also have significant implications for translation of this technology into clinical therapy for ischemic cardiovascular diseases.


Bioconjugate Chemistry | 2010

Simple fluidic system for purifying and concentrating diagnostic biomarkers using stimuli-responsive antibody conjugates and membranes.

Allison L. Golden; Charles F. Battrell; Sean M. Pennell; Allan S. Hoffman; James J. Lai; Patrick S. Stayton

We report a simple fluidic system that can purify and concentrate diagnostic biomarkers through the capture and triggered release of stimuli-responsive polymer-antibody conjugates at porous membranes that are grafted with the same stimuli-responsive polymer. This technique is applied here to the capture and detection of a model streptavidin antigen and subsequently to clinical ranges of the malaria antigen Plasmodium falciparum histidine-rich protein 2 (PfHRP2) from spiked human plasma. The carboxyl end-groups of semi-telechelic poly(N-isopropylacrylamide) (pNIPAAm) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization were modified with tetrafluorophenol to yield amine-reactive ester groups for conjugation to amine groups of anti-streptavidin and anti-PfHRP2 antibodies. Stimuli-responsive membranes were constructed from 1.2 μm pore-size, hydroxylated, nylon-6,6 filters (Loprodyne, from Pall Corporation). The surface hydroxyl groups on the filters were conjugated to a 2-ethylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid (EMP) RAFT chain transfer agent, and the surface-grafted pNIPAAm was obtained by subsequent polymerization. The number average molecular weight (Mn) and polydispersity indices (PDI) of the surface grafts were characterized, and membranes with either 4100 and 8400 dalton pNIPAAm grafts showed greater than 80% anti-streptavidin capture efficiency. The 8400 dalton-graft membrane showed the highest release efficiency, and it was demonstrated that at 0.2 nM starting concentration the streptavidin could be concentrated approximately 40-fold by releasing into a small 50 μL volume. This concentrator system was applied to the capture and concentration of the PfHRP2 antigen, and results showed that the PfHRP2 antigen could be processed and detected at clinically relevant concentrations of this malaria biomarker.


Lab on a Chip | 2010

A helical flow, circular microreactor for separating and enriching “smart” polymer–antibody capture reagents

John M. Hoffman; Mitsuhiro Ebara; James J. Lai; Allan S. Hoffman; Albert Folch; Patrick S. Stayton

We report a mechanistic study of how flow and recirculation in a microreactor can be used to optimize the capture and release of stimuli-responsive polymer-protein reagents on stimuli-responsive polymer-grafted channel surfaces. Poly(N-isopropylacrylamide) (PNIPAAm) was grafted to polydimethylsiloxane (PDMS) channel walls, creating switchable surfaces where PNIPAAm-protein conjugates would adhere at temperatures above the lower critical solution temperature (LCST) and released below the LCST. A PNIPAAm-streptavidin conjugate that can capture biotinylated antibody-antigen targets was first characterized. The conjugates immobilization and release were limited by mass transport to and from the functionalized PNIPAAm surface. Transport and adsorption efficiencies were dependent on the aggregate size of the PNIPAAm-streptavidin conjugate above the LCST and also were dependent on whether the conjugates were heated in the presence of the stimuli-responsive surface or pre-aggregated and then flowed across the surface. As conjugate size increased, through the addition of non-conjugated PNIPAAm, recirculation and mixing were shown to markedly improve conjugate immobilization compared to diffusion alone. Under optimized conditions of flow and reagent concentrations, approximately 60% of the streptavidin conjugate bolus could be captured at the surface and subsequently successfully released. The kinetic release profile sharpness was also strongly improved with recirculation and helical mixing. Finally, the concentration of protein-polymer conjugates could be achieved by continuous conjugate flow into the heated recirculator, allowing nearly linear enrichment of the conjugate reagent from larger volumes. This capability was shown with anti-p24 HIV monoclonal antibody reagents that were enriched over 5-fold using this protocol. These studies provide insight into the mechanism of smart polymer-protein conjugate capture and release in grafted channels and show the potential of this purification and enrichment module for processing diagnostic samples.


Bioconjugate Chemistry | 2015

Stimuli-responsive reagent system for enabling microfluidic immunoassays with biomarker purification and enrichment

John M. Hoffman; Patrick S. Stayton; Allan S. Hoffman; James J. Lai

Immunoassays have been translated into microfluidic device formats, but significant challenges relating to upstream sample processing still limit their applications. Here, stimuli-responsive polymer–antibody conjugates are utilized in a microfluidic immunoassay to enable rapid biomarker purification and enrichment as well as sensitive detection. The conjugates were constructed by covalently grafting poly(N-isopropylacrylamide) (PNIPAAm), a thermally responsive polymer, to the lysine residues of anti-prostate specific antigen (PSA) Immunoglobulin G (IgG) using carbodiimide chemistry via the polymer end-carboxylate. The antibody-PNIPAAm (capture) conjugates and antibody-alkaline phosphatase (detection) conjugates formed sandwich immunocomplexes via PSA binding in 50% human plasma. The complexes were loaded into a recirculating poly(dimethylsiloxane) microreactor, equipped with micropumps and transverse flow features, for subsequent separation, enrichment, and quantification. The immunocomplexes were captured by heating the solution to 39 °C, mixed over the transverse features for 2 min, and washed with warm buffer. In one approach, the assay utilized immunocomplex solution that was contained in an 80 nL microreactor, which was loaded with solution at room temperature and subsequently heated to 39 °C. The assay took 25 min and resulted in 37 pM PSA limit of detection (LOD), which is comparable to a plate ELISA employing the same antibody pair. In another approach, the microreactor was preheated to 39 °C, and immunocomplex solution was flowed through the reactor, mixed, and washed. When the specimen volume was increased to 7.5 μL by repeating the capture process three times, the higher specimen volume led to immunocomplex enrichment within the microreactor. The resulting assay LOD was 0.5 pM, which is 2 orders of magnitude lower than the plate ELISA. Both approaches generate antigen specific signal over a clinically significant range. The sample processing capabilities and subsequent utility in a biomarker assay demonstrate the opportunity for stimuli-responsive polymer–protein conjugates in novel diagnostic technologies.


Langmuir | 2013

A Photoinduced Nanoparticle Separation in Microchannels via pH-Sensitive Surface Traps

Mitsuhiro Ebara; John M. Hoffman; Allan S. Hoffman; Patrick S. Stayton; James J. Lai

A microfluidic surface trap was developed for capturing pH-sensitive nanoparticles via a photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (o-NBA) that reduces the solution pH in microchannels. The surface trap and nanoparticles were both modified with a pH-responsive polymer-poly(N-isorpopylacylamide-co-propylacrylic acid), P(NIPAAm-co-PAA). The o-NBA-coated microchannel walls demonstrated rapid proton release upon UV light irradiation, allowing the buffered solution pH in the microchannel to decrease from 7.4 to 4.5 in 60 s. The low solution pH switched the polymer-modified surfaces to be more hydrophobic, which enabled the capture of the pH-sensitive nanobeads onto the trap. When a photomask was utilized to limit the UV irradiation to a specific channel region, we were able to restrict the particle separation to only the exposed region. Via control of the UV irradiation, this technique enables not only prompt pH changes within the channel but also the capture of target molecules at specific channel locations.


Biointerphases | 2016

Three-dimensional localization of polymer nanoparticles in cells using ToF-SIMS

Daniel J. Graham; John T. Wilson; James J. Lai; Patrick S. Stayton; David G. Castner

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) three-dimensional (3D) depth profiling and a novel background subtraction method were used to localize polymeric nanoparticles within cells. Results showed that ToF-SIMS 3D depth profiling is capable of localizing polymer nanoparticles within HeLa cells. ToF-SIMS results compared well with optical images of cells incubated with fluorescently labeled polymer nanoparticles, with both imaging techniques demonstrating clustering of nanoparticles in punctate regions consistent with endosomal localization as anticipated based on the nanoparticle design.


Nanoscale | 2015

Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific

Kun-Hung Chen; David J. Lundy; Elsie K.-W. Toh; Chien-Hsi Chen; C. Shih; Peilin Chen; H.-C. Chang; James J. Lai; Patrick S. Stayton; Allan S. Hoffman; Patrick C.H. Hsieh

This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner.


The Journal of Infectious Diseases | 2017

Current Status of Point-of-Care Testing for Human Immunodeficiency Virus Drug Resistance

Horacio A. Duarte; Nuttada Panpradist; Ingrid Beck; Barry R. Lutz; James J. Lai; Ruth M Kanthula; Rami Kantor; Anubhav Tripathi; Shanmugam Saravanan; Iain J. MacLeod; Michael H. Chung; Guoqing Zhang; Chunfu Yang; Lisa M. Frenkel

&NA; Healthcare delivery has advanced due to the implementation of point‐of‐care testing, which is often performed within minutes to hours in minimally equipped laboratories or at home. Technologic advances are leading to point‐of‐care kits that incorporate nucleic acid‐based assays, including polymerase chain reaction, isothermal amplification, ligation, and hybridization reactions. As a limited number of single‐nucleotide polymorphisms are associated with clinically significant human immunodeficiency virus (HIV) drug resistance, assays to detect these mutations have been developed. Early versions of these assays have been used in research. This review summarizes the principles underlying each assay and discusses strategic needs for their incorporation into the management of HIV infection.


Methods of Molecular Biology | 2015

Improving lateral-flow immunoassay (LFIA) diagnostics via biomarker enrichment for mHealth.

James J. Lai; Patrick S. Stayton

Optical detection technologies based on mobile devices can be utilized to enable many mHealth applications, including a reader for lateral-flow immunoassay (LFIA). However, an intrinsic challenge associated with LFIA for clinical diagnostics is the limitation in sensitivity. Therefore, rapid and simple specimen processing strategies can directly enable more sensitive LFIA by purifying and concentrating biomarkers. Here, a binary reagent system is presented for concentrating analytes from a larger volume specimen to improve the malaria LFIAs limit of detection (LOD). The biomarker enrichment process utilizes temperature-responsive gold-streptavidin conjugates, biotinylated antibodies, and temperature-responsive magnetic nanoparticles. The temperature-responsive gold colloids were synthesized by modifying the citrate-stabilized gold colloids with a diblock copolymer, containing a thermally responsive poly(N-isopropylacrylamide) (pNIPAAm) segment and a gold-binding block composed of NIPAAm-co-N,N-dimethylaminoethylacrylamide. The gold-streptavidin conjugates were synthesized by conjugating temperature-responsive gold colloids with streptavidin via covalent linkages using carbodiimide chemistry chemistry. The gold conjugates formed half-sandwiches, gold labeled biomarker, by complexing with biotinylated antibodies that were bound to Plasmodium falciparum histidine-rich protein 2 (PfHRP2), a malaria antigen. When a thermal stimulus was applied in conjunction with a magnetic field, the half-sandwiches and temperature-responsive magnetic nanoparticles that were both decorated with pNIPAAm formed large aggregates that were efficiently magnetically separated from human plasma. The binary reagent system was applied to a large volume (500 μL) specimen for concentrating biomarker 50-fold into a small volume and applied directly to an off-the-shelf malaria LFIA to improve the signal-to-noise ratio.


Science Translational Medicine | 2016

Reloadable multidrug capturing delivery system for targeted ischemic disease treatment

Jasmine P. J. Wu; Bill Cheng; Steve R. Roffler; David J. Lundy; Christopher Y. T. Yen; Peilin Chen; James J. Lai; Suzie H. Pun; Patrick S. Stayton; Patrick C.H. Hsieh

A reloadable drug capture system facilitates multidrug therapy for neovascularization after limb ischemia. Free refills on ischemia treatment Restoring functional tissue after ischemia is thought to require neovascularization to replace the occluded blood vessels. Neovascularization can be induced by growth factor proteins, but they generally have short half-lives in circulation and are difficult to deliver to the site of injury. Wu et al. have designed a reloadable system that uses antibodies embedded in a hydrogel to capture tagged growth factor therapeutics and retain them at the site of ischemic injury. Moreover, it can be easily reloaded by intravenous injection of additional growth factors doses, which are then captured by the antibody-based system. The authors demonstrated the efficacy and safety of this system in mouse and pig models of limb ischemia, suggesting a potential for future clinical development. Human clinical trials of protein therapy for ischemic diseases have shown disappointing outcomes so far, mainly because of the poor circulatory half-life of growth factors in circulation and their low uptake and retention by the targeted injury site. The attachment of polyethylene glycol (PEG) extends the circulatory half-lives of protein drugs but reduces their extravasation and retention at the target site. To address this issue, we have developed a drug capture system using a mixture of hyaluronic acid (HA) hydrogel and anti-PEG immunoglobulin M antibodies, which, when injected at a target body site, can capture and retain a variety of systemically injected PEGylated therapeutics at that site. Furthermore, repeated systemic injections permit “reloading” of the capture depot, allowing the use of complex multistage therapies. This study demonstrates this capture system in both murine and porcine models of critical limb ischemia. The results show that the reloadable HA/anti-PEG system has the potential to be clinically applied to patients with ischemic diseases, who require sequential administration of protein drugs for optimal outcomes.

Collaboration


Dive into the James J. Lai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge