Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James J. Moresco is active.

Publication


Featured researches published by James J. Moresco.


Molecular Cell | 2009

Distinct Argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline

Weifeng Gu; Masaki Shirayama; Darryl Conte; Jessica J. Vasale; Pedro J. Batista; Julie M. Claycomb; James J. Moresco; Elaine Youngman; Jennifer Keys; Matthew J. Stoltz; Chun-Cheih G. Chen; Daniel A. Chaves; Shenghua E. Duan; Krisitin D. Kasschau; Noah Fahlgren; John R. Yates; Shohei Mitani; James C. Carrington; Craig C. Mello

Endogenous small RNAs (endo-siRNAs) interact with Argonaute (AGO) proteins to mediate sequence-specific regulation of diverse biological processes. Here, we combine deep-sequencing and genetic approaches to explore the biogenesis and function of endo-siRNAs in C. elegans. We describe conditional alleles of the Dicer-related helicase, drh-3, that abrogate both RNA interference and the biogenesis of endo-siRNAs, called 22G-RNAs. DRH-3 is a core component of RNA-dependent RNA polymerase (RdRP) complexes essential for several distinct 22G-RNA systems. We show that, in the germline, one system is dependent on worm-specific AGOs, including WAGO-1, which localizes to germline nuage structures called P granules. WAGO-1 silences certain genes, transposons, pseudogenes, and cryptic loci. Finally, we demonstrate that components of the nonsense-mediated decay pathway function in at least one WAGO-mediated surveillance pathway. These findings broaden our understanding of the biogenesis and diversity of 22G-RNAs and suggest additional regulatory functions for small RNAs.


Cell Reports | 2013

Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Diverse ER Proteostasis Environments

Matthew D. Shoulders; Lisa M. Ryno; Joseph C. Genereux; James J. Moresco; Patricia G. Tu; Chunlei Wu; John R. Yates; Andrew I. Su; Jeffery W. Kelly; R. Luke Wiseman

The unfolded protein response (UPR) maintains endoplasmic reticulum (ER) proteostasis through the activation of transcription factors such as XBP1s and ATF6. The functional consequences of these transcription factors for ER proteostasis remain poorly defined. Here, we describe methodology that enables orthogonal, small-molecule-mediated activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the same cell independent of stress. We employ transcriptomics and quantitative proteomics to evaluate ER proteostasis network remodeling owing to the XBP1s and/or ATF6 transcriptional programs. Furthermore, we demonstrate that the three ER proteostasis environments accessible by activating XBP1s and/or ATF6 differentially influence the folding, trafficking, and degradation of destabilized ER client proteins without globally affecting the endogenous proteome. Our data reveal how the ER proteostasis network is remodeled by the XBP1s and/or ATF6 transcriptional programs at the molecular level and demonstrate the potential for selective restoration of aberrant ER proteostasis of pathologic, destabilized proteins through arm-selective UPR activation.


Cell Stem Cell | 2014

In Vivo Activation of a Conserved MicroRNA Program Induces Mammalian Heart Regeneration

Aitor Aguirre; Nuria Montserrat; Serena Zacchigna; Emmanuel Nivet; Tomoaki Hishida; Marie N. Krause; Leo Kurian; Alejandro Ocampo; Eric Vazquez-Ferrer; Concepción Rodríguez-Esteban; Sachin Kumar; James J. Moresco; John R. Yates; Josep M. Campistol; Ignacio Sancho-Martinez; Mauro Giacca; Juan Carlos Izpisua Belmonte

Heart failure is a leading cause of mortality and morbidity in the developed world, partly because mammals lack the ability to regenerate heart tissue. Whether this is due to evolutionary loss of regenerative mechanisms present in other organisms or to an inability to activate such mechanisms is currently unclear. Here we decipher mechanisms underlying heart regeneration in adult zebrafish and show that the molecular regulators of this response are conserved in mammals. We identified miR-99/100 and Let-7a/c and their protein targets smarca5 and fntb as critical regulators of cardiomyocyte dedifferentiation and heart regeneration in zebrafish. Although human and murine adult cardiomyocytes fail to elicit an endogenous regenerative response after myocardial infarction, we show that in vivo manipulation of this molecular machinery in mice results in cardiomyocyte dedifferentiation and improved heart functionality after injury. These data provide a proof of concept for identifying and activating conserved molecular programs to regenerate the damaged heart.


Science | 2014

HSF-1-mediated cytoskeletal integrity determines thermotolerance and life span

Nathan A. Baird; Peter M. Douglas; Milos S. Simic; Ana R. Grant; James J. Moresco; Suzanne Wolff; John R. Yates; Gerard Manning; Andrew Dillin

The conserved heat shock transcription factor–1 (HSF-1) is essential to cellular stress resistance and life-span determination. The canonical function of HSF-1 is to regulate a network of genes encoding molecular chaperones that protect proteins from damage caused by extrinsic environmental stress or intrinsic age-related deterioration. In Caenorhabditis elegans, we engineered a modified HSF-1 strain that increased stress resistance and longevity without enhanced chaperone induction. This health assurance acted through the regulation of the calcium-binding protein PAT-10. Loss of pat-10 caused a collapse of the actin cytoskeleton, stress resistance, and life span. Furthermore, overexpression of pat-10 increased actin filament stability, thermotolerance, and longevity, indicating that in addition to chaperone regulation, HSF-1 has a prominent role in cytoskeletal integrity, ensuring cellular function during stress and aging. A transcription factor may promote longevity by stabilizing the actin cytoskeleton in nematodes. Cytoskeleton protects from stress and aging The transcription factor HSF-1 has an unexpected second function that allows it to extend longevity in worms. Baird et al. expressed a modified form of HSF-1 in nematodes. The modified protein could not activate genes encoding protein chaperones. Such chaperones are thought to protect many cellular proteins from heat shock and other damage during aging However, the modified protein still extended the worm life span by regulating the transcription of other genes. One gene it regulated was pat-10, which encodes a troponin-like calcium binding protein. Overexpression of PAT-10 also extended worm life span, apparently by changing the stability of the actin cytoskeleton. Science, this issue p. 360


Nature Protocols | 2016

Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0

Paulo C. Carvalho; Diogo B. Lima; Felipe da Veiga Leprevost; Marlon Dias Mariano Santos; Juliana S. G. Fischer; Priscila Ferreira Aquino; James J. Moresco; John R. Yates; Valmir Carneiro Barbosa

PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for the analysis of shotgun proteomic data. The contained modules allow for formatting of sequence databases, peptide spectrum matching, statistical filtering and data organization, extracting quantitative information from label-free and chemically labeled data, and analyzing statistics for differential proteomics. PatternLab also has modules to perform similarity-driven studies with de novo sequencing data, to evaluate time-course experiments and to highlight the biological significance of data with regard to the Gene Ontology database. The PatternLab for proteomics 4.0 package brings together all of these modules in a self-contained software environment, which allows for complete proteomic data analysis and the display of results in a variety of graphical formats. All updates to PatternLab, including new features, have been previously tested on millions of mass spectra. PatternLab is easy to install, and it is freely available from http://patternlabforproteomics.org.


Genes & Development | 2013

α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes

Seung H. Choi; Conchi Estarás; James J. Moresco; John R. Yates; Katherine A. Jones

Mutation of the adenomatous polyposis coli (APC) tumor suppressor stabilizes β-catenin and aberrantly reactivates Wnt/β-catenin target genes in colon cancer. APC mutants in cancer frequently lack the conserved catenin inhibitory domain (CID), which is essential for β-catenin proteolysis. Here we show that the APC CID interacts with α-catenin, a Hippo signaling regulator and heterodimeric partner of β-catenin at cell:cell adherens junctions. Importantly, α-catenin promotes β-catenin ubiquitylation and proteolysis by stabilizing its association with APC and protecting the phosphodegron. Moreover, β-catenin ubiquitylation requires binding to α-catenin. Multidimensional protein identification technology (MudPIT) proteomics of multiple Wnt regulatory complexes reveals that α-catenin binds with β-catenin to LEF-1/TCF DNA-binding proteins in Wnt3a signaling cells and recruits APC in a complex with the CtBP:CoREST:LSD1 histone H3K4 demethylase to regulate transcription and β-catenin occupancy at Wnt target genes. Interestingly, tyrosine phosphorylation of α-catenin at Y177 disrupts binding to APC but not β-catenin and prevents repression of Wnt target genes in transformed cells. Chromatin immunoprecipitation studies further show that α-catenin and APC are recruited with β-catenin to Wnt response elements in human embryonic stem cells (hESCs). Knockdown of α-catenin in hESCs prevents the switch-off of Wnt/β-catenin transcription and promotes endodermal differentiation. Our findings indicate a role for α-catenin in the APC destruction complex and at Wnt target genes.


Journal of Proteome Research | 2014

Off-Line Multidimensional Liquid Chromatography and Auto Sampling Result in Sample Loss in LC/LC–MS/MS

Sameh Magdeldin; James J. Moresco; Tadashi Yamamoto; John R. Yates

Large-scale proteomics often employs two orthogonal separation methods to fractionate complex peptide mixtures. Fractionation can involve ion exchange separation coupled to reversed-phase separation or, more recently, two reversed-phase separations performed at different pH values. When multidimensional separations are combined with tandem mass spectrometry for protein identification, the strategy is often referred to as multidimensional protein identification technology (MudPIT). MudPIT has been used in either an automated (online) or manual (offline) format. In this study, we evaluated the performance of different MudPIT strategies by both label-free and tandem mass tag (TMT) isobaric tagging. Our findings revealed that online MudPIT provided more peptide/protein identifications and higher sequence coverage than offline platforms. When employing an off-line fractionation method with direct loading of samples onto the column from an eppendorf tube via a high-pressure device, a 5.3% loss in protein identifications is observed. When off-line fractionated samples are loaded via an autosampler, a 44.5% loss in protein identifications is observed compared with direct loading of samples onto a triphasic capillary column. Moreover, peptide recovery was significantly lower after offline fractionation than in online fractionation. Signal-to-noise (S/N) ratio, however, was not significantly altered between experimental groups. It is likely that offline sample collection results in stochastic peptide loss due to noncovalent adsorption to solid surfaces. Therefore, the use of the offline approaches should be considered carefully when processing minute quantities of valuable samples.


Journal of Proteomics | 2010

Identifying components of protein complexes in C. elegans using co-immunoprecipitation and mass spectrometry.

James J. Moresco; Paulo C. Carvalho; John R. Yates

Mass spectrometry-based proteomics is rapidly becoming an essential tool for biologists. One of the most common applications is identifying the components of protein complexes isolated by co-immunoprecipitation. In this review, we discuss the co-immunoprecipitation, mass spectrometry and data analysis techniques that have been used successfully to define protein complexes in C. elegans research. In this discussion, two strategies emerged. One approach is to use stringent biochemical purification methods and attempt to identify a small number of complex components with a high degree of certainty based on MS data. A second approach is to use less stringent purification and identification parameters, and ultimately test a longer list of potential binding partners in biological validation assays. This should provide a useful guide for biologists planning proteomic experiments.


PLOS Neglected Tropical Diseases | 2016

Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding

Tae Kwon Kim; Lucas Tirloni; Antonio Frederico Michel Pinto; James J. Moresco; John R. Yates; Itabajara da Silva Vaz; Albert Mulenga

Ixodes scapularis is the most medically important tick species and transmits five of the 14 reportable human tick borne disease (TBD) agents in the USA. This study describes LC-MS/MS identification of 582 tick- and 83 rabbit proteins in saliva of I. scapularis ticks that fed for 24, 48, 72, 96, and 120 h, as well as engorged but not detached (BD), and spontaneously detached (SD). The 582 tick proteins include proteases (5.7%), protease inhibitors (7.4%), unknown function proteins (22%), immunity/antimicrobial (2.6%), lipocalin (3.1%), heme/iron binding (2.6%), extracellular matrix/ cell adhesion (2.2%), oxidant metabolism/ detoxification (6%), transporter/ receptor related (3.2%), cytoskeletal (5.5%), and housekeeping-like (39.7%). Notable observations include: (i) tick saliva proteins of unknown function accounting for >33% of total protein content, (ii) 79% of proteases are metalloproteases, (iii) 13% (76/582) of proteins in this study were found in saliva of other tick species and, (iv) ticks apparently selectively inject functionally similar but unique proteins every 24 h, which we speculate is the ticks antigenic variation equivalent strategy to protect important tick feeding functions from host immune system. The host immune responses to proteins present in 24 h I. scapularis saliva will not be effective at later feeding stages. Rabbit proteins identified in our study suggest the ticks strategic use of host proteins to modulate the feeding site. Notably fibrinogen, which is central to blood clotting and wound healing, was detected in high abundance in BD and SD saliva, when the tick is preparing to terminate feeding and detach from the host. A remarkable tick adaptation is that the feeding lesion is completely healed when the tick detaches from the host. Does the tick concentrate fibrinogen at the feeding site to aide in promoting healing of the feeding lesion? Overall, these data provide broad insight into molecular mechanisms regulating different tick feeding phases. These data set the foundation for in depth I. scapularis tick feeding physiology and TBD transmission studies.


Proteomics | 2012

Quantitative proteomics of parotid saliva in primary Sjögren's syndrome

Kiran S. Ambatipudi; Stephen Swatkoski; James J. Moresco; Patricia G. Tu; Andreea Coca; Jennifer H. Anolik; Marjan Gucek; Ignacio Sanz; John R. Yates; James E. Melvin

The diagnosis of primary Sjögrens syndrome (pSS) is difficult due to the lack of specific laboratory and clinical tests. As an initial step for the global discovery of changes in the abundance of parotid salivary proteins in pSS, a pooled sample was compared to that from healthy control subjects by multidimensional protein identification technology (MudPIT). A total of 1246 proteins were identified by MudPIT. The abundance of 477 of these proteins did not change, 529 were only detected in either the pSS or HC sample, while 206 of these proteins were significantly upregulated ≥ twofold and 34 were downregulated ≤ 0.5. Ingenuity Pathway Analyses of differentially expressed proteins identified by MudPIT resulted in the identification of 100 significant pathways. The same samples were quantified in parallel using RP MS. Fifty‐eight of 71 proteins identified by RP overlapped with MudPIT results. Five proteins were further analyzed by targeted label‐free quantification to confirm the similar relative differential expression observed by RP and MudPIT approaches. The present study supports the use of MS for global discovery and validation of marker proteins for improved and early diagnosis of pSS.

Collaboration


Dive into the James J. Moresco's collaboration.

Top Co-Authors

Avatar

John R. Yates

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Patricia G. Tu

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig C. Mello

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Darryl Conte

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge