Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James K. Carrow is active.

Publication


Featured researches published by James K. Carrow.


Advanced Healthcare Materials | 2015

Nanomaterials for Engineering Stem Cell Responses.

Punyavee Kerativitayanan; James K. Carrow; Akhilesh K. Gaharwar

Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications.


ACS Nano | 2016

Mechanically Stiff Nanocomposite Hydrogels at Ultralow Nanoparticle Content

Manish K. Jaiswal; Janet R. Xavier; James K. Carrow; Prachi Desai; Daniel L. Alge; Akhilesh K. Gaharwar

Although hydrogels are able to mimic native tissue microenvironments, their utility for biomedical applications is severely hampered due to limited mechanical stiffness and low toughness. Despite recent progress in designing stiff and tough hydrogels, it is still challenging to achieve a cell-friendly, high modulus construct. Here, we report a highly efficient method to reinforce collagen-based hydrogels using extremely low concentrations of a nanoparticulate-reinforcing agent that acts as a cross-link epicenter. Extraordinarily, the addition of these nanoparticles at a 10 000-fold lower concentration relative to polymer resulted in a more than 10-fold increase in mechanical stiffness and a 20-fold increase in toughness. We attribute the high stiffness of the nanocomposite network to the chemical functionality of the nanoparticles, which enabled the cross-linking of multiple polymeric chains to the nanoparticle surface. The mechanical stiffness of the nanoengineered hydrogel can be tailored between 0.2 and 200 kPa simply by manipulating the size of the nanoparticles (4, 8, and 12 nm), as well as the concentrations of the nanoparticles and polymer. Moreover, cells can be easily encapsulated within the nanoparticulate-reinforced hydrogel network, showing high viability. In addition, encapsulated cells were able to sense and respond to matrix stiffness. Overall, these results demonstrate a facile approach to modulate the mechanical stiffness of collagen-based hydrogels and may have broad utility for various biomedical applications, including use as tissue-engineered scaffolds and cell/protein delivery vehicles.


Essentials of 3D Biofabrication and Translation | 2015

Polymers for Bioprinting

James K. Carrow; Punyavee Kerativitayanan; Manish K. Jaiswal; Giriraj Lokhande; Akhilesh K. Gaharwar

Abstract Bioprinting is a process of precisely designed scaffolds using three-dimensional printing technologies for functional tissue engineering utilizing cell-laden biomaterials as bioink. A range of polymers can be used as bioink to stimulate favorable cellular interactions, leading to enhanced cell motility, proliferation, and subsequent differentiation. Both natural and synthetic polymers have been considered for various bioprinting applications, each with a corresponding set of advantages and limitations. Natural polymers more aptly mimic the native extracellular matrix, leading to more favorable cellular responses, while synthetic polymers can be more easily tailored for more efficient printing. Because many of these bioink materials are rooted in traditional tissue engineering scaffold design, bioprinting optimization remains a challenge; however, emerging trends in bioink development have begun to circumvent these issues, providing bioprinting research with a very promising future in regenerative medicine. Further investigation into the interplay of polymer type and fabrication technique will help to formulate new polymer bioinks that can expedite the process from printing to implantation.


Acta Biomaterialia | 2018

Nanoengineered injectable hydrogels for wound healing application

Giriraj Lokhande; James K. Carrow; Teena Thakur; Janet R. Xavier; Madasamy Parani; Kayla J. Bayless; Akhilesh K. Gaharwar

We report injectable nanoengineered hemostats for enhanced wound healing and tissue regeneration. The nanoengineered system consists of the natural polysaccharide, κ-carrageenan (κCA), loaded with synthetic two-dimensional (2D) nanosilicates. Nanoengineered hydrogels showed shear-thinning characteristics and can be injected for minimally invasive approaches. The injectable gels can be physically crosslinked in presence of monovalent ions to form mechanically strong hydrogels. By controlling the ratio between κCA and nanosilicates, compressive stiffness of crosslinked hydrogels can be modulated between 20 and 200 kPa. Despite high mechanical stiffness, nanocomposite hydrogels are highly porous with an interconnected network. The addition of nanosilicates to κCA increases protein adsorption on nanocomposite hydrogels that results in enhance cell adhesion and spreading, increase platelets binding and reduce blood clotting time. Moreover, due to presence of nanosilicates, a range of therapeutic biomacromolecules can be deliver in a sustain manner. The addition of nanosilicates significantly suppresses the release of entrap vascular endothelial growth factor (VEGF) and facilitate in vitro tissue regeneration and wound healing. Thus, this multifunctional nanocomposite hydrogel can be used as an injectable hemostat and an efficient vehicle for therapeutic delivery to facilitate tissue regeneration. STATEMENT OF SIGNIFICANCE Hemorrhage is a leading cause of death in battlefield wounds, anastomosis hemorrhage and percutaneous intervention. Thus, there is a need for the development of novel bioactive materials to reduce the likelihood of hemorrhagic shock stemming from internal wounds. Here, we introduce an injectable hemostat from kappa-carrageenan and two-dimensional (2D) nanosilicates. Nanosilicates mechanically reinforce the hydrogels, provide enhanced physiological stability and accelerate the clotting time by two-fold. The sustained release of entrapped therapeutics due to presence of nanosilicates promotes enhanced wound healing. The multifunctional nanocomposite hydrogels could be used as an injectable hemostat for penetrating injury and percutaneous intervention during surgery.


ACS Applied Materials & Interfaces | 2018

Nanoengineered Ionic–Covalent Entanglement (NICE) Bioinks for 3D Bioprinting

David Chimene; Charles W. Peak; James L. Gentry; James K. Carrow; Lauren M. Cross; Eli Mondragon; Guinea Brasil Camargo Cardoso; Roland Kaunas; Akhilesh K. Gaharwar

We introduce an enhanced nanoengineered ionic-covalent entanglement (NICE) bioink for the fabrication of mechanically stiff and elastomeric 3D biostructures. NICE bioink formulations combine nanocomposite and ionic-covalent entanglement (ICE) strengthening mechanisms to print customizable cell-laden constructs for tissue engineering with high structural fidelity and mechanical stiffness. Nanocomposite and ICE strengthening mechanisms complement each other through synergistic interactions, improving mechanical strength, elasticity, toughness, and flow properties beyond the sum of the effects of either reinforcement technique alone. Herschel-Bulkley flow behavior shields encapsulated cells from excessive shear stresses during extrusion. The encapsulated cells readily proliferate and maintain high cell viability over 120 days within the 3D-printed structure, which is vital for long-term tissue regeneration. A unique aspect of the NICE bioink is its ability to print much taller structures, with higher aspect ratios, than can be achieved with conventional bioinks without requiring secondary supports. We envision that NICE bioinks can be used to bioprint complex, large-scale, cell-laden constructs for tissue engineering with high structural fidelity and mechanical stiffness for applications in custom bioprinted scaffolds and tissue engineered implants.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates

James K. Carrow; Lauren M. Cross; Robert W. Reese; Manish K. Jaiswal; Carl A. Gregory; Roland Kaunas; Irtisha Singh; Akhilesh K. Gaharwar

Significance We demonstrate the use of next-generation sequencing technology (RNA-seq) to understand the effect of a two-dimensional nanomaterial on human stem cells at the whole-transcriptome level. Our results identify more than 4,000 genes that are significantly affected, and several biophysical and biochemical pathways are triggered by nanoparticle treatment. We expect that this systematic approach to understand widespread changes in gene expression due to nanomaterial exposure is key to develop new bioactive materials for biomedical applications. Two-dimensional nanomaterials, an ultrathin class of materials such as graphene, nanoclays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs), have emerged as a new generation of materials due to their unique properties relative to macroscale counterparts. However, little is known about the transcriptome dynamics following exposure to these nanomaterials. Here, we investigate the interactions of 2D nanosilicates, a layered clay, with human mesenchymal stem cells (hMSCs) at the whole-transcriptome level by high-throughput sequencing (RNA-seq). Analysis of cell–nanosilicate interactions by monitoring changes in transcriptome profile uncovered key biophysical and biochemical cellular pathways triggered by nanosilicates. A widespread alteration of genes was observed due to nanosilicate exposure as more than 4,000 genes were differentially expressed. The change in mRNA expression levels revealed clathrin-mediated endocytosis of nanosilicates. Nanosilicate attachment to the cell membrane and subsequent cellular internalization activated stress-responsive pathways such as mitogen-activated protein kinase (MAPK), which subsequently directed hMSC differentiation toward osteogenic and chondrogenic lineages. This study provides transcriptomic insight on the role of surface-mediated cellular signaling triggered by nanomaterials and enables development of nanomaterials-based therapeutics for regenerative medicine. This approach in understanding nanomaterial–cell interactions illustrates how change in transcriptomic profile can predict downstream effects following nanomaterial treatment.


Advanced Materials | 2017

Vacancy-Driven Gelation Using Defect-Rich Nanoassemblies of 2D Transition Metal Dichalcogenides and Polymeric Binder for Biomedical Applications

Manish K. Jaiswal; James K. Carrow; James L. Gentry; Jagriti Gupta; Nara Altangerel; Marlan O. Scully; Akhilesh K. Gaharwar

A new approach of vacancy-driven gelation to obtain chemically crosslinked hydrogels from defect-rich 2D molybdenum disulfide (MoS2 ) nanoassemblies and polymeric binder is reported. This approach utilizes the planar and edge atomic defects available on the surface of the 2D MoS2 nanoassemblies to form mechanically resilient and elastomeric nanocomposite hydrogels. The atomic defects present on the lattice plane of 2D MoS2 nanoassemblies are due to atomic vacancies and can act as an active center for vacancy-driven gelation with a thiol-activated terminal such as four-arm poly(ethylene glycol)-thiol (PEG-SH) via chemisorption. By modulating the number of vacancies on the 2D MoS2 nanoassemblies, the physical and chemical properties of the hydrogel network can be controlled. This vacancy-driven gelation process does not require external stimuli such as UV exposure, chemical initiator, or thermal agitation for crosslinking and thus provides a nontoxic and facile approach to encapsulate cells and proteins. 2D MoS2 nanoassemblies are cytocompatible, and encapsulated cells in the nanocomposite hydrogels show high viability. Overall, the nanoengineered hydrogel obtained from vacancy-driven gelation is mechanically resilient and can be used for a range of biomedical applications including tissue engineering, regenerative medicine, and cell and therapeutic delivery.


Acta Biomaterialia | 2017

Shape Memory Polyurethanes with Oxidation-induced Degradation: In vivo and In vitro Correlations for Endovascular Material Applications

Andrew C. Weems; Kevin T. Wacker; James K. Carrow; Anthony J. Boyle; Duncan J. Maitland

The synthesis of thermoset shape memory polymer (SMP) polyurethanes from symmetric, aliphatic alcohols and diisocyanates has previously demonstrated excellent biocompatibility in short term in vitro and in vivo studies, although long term stability has not been investigated. Here we demonstrate that while rapid oxidation occurs in these thermoset SMPs, facilitated by the incorporation of multi-functional, branching amino groups, byproduct analysis does not indicate toxicological concern for these materials. Through complex multi-step chemical reactions, chain scission begins from the amines in the monomeric repeat units, and results, ultimately, in the formation of carboxylic acids, secondary and primary amines; the degradation rate and product concentrations were confirmed using liquid chromatography mass spectrometry, in model compound studies, yielding a previously unexamined degradation mechanism for these biomaterials. The rate of degradation is dependent on the hydrogen peroxide concentration, and comparison of explanted samples reveals a much slower rate in vivo compared to the widely accepted literature in vitro real-time equivalent of 3% H2O2. Cytotoxicity studies of the material surface, and examination of the degradation product accumulations, indicate that degradation has negligible impact on cytotoxicity of these materials. STATEMENT OF SIGNIFICANCE This paper presents an in-depth analysis on the degradation of porous, shape memory polyurethanes (SMPs), including traditional surface characterization as well as model degradation compounds with absolute quantification. This combination of techniques allows for determination of rates of degradation as well as accumulation of individual degradation products. These behaviors are used for in vivo-in vitro comparisons for determination of real time degradation rates. Previous studies have primarily been limited to surface characterization without examination of degradation products and accumulation rates. To our knowledge, our work presents a unique example where a range of material scales (atomistic-scale model compounds along with macroscopic porous SMPs) are used in conjunction with ex planted samples for calculation of degradation rates and toxicological risk.


Macromolecular Rapid Communications | 2016

Cold Plasma Reticulation of Shape Memory Embolic Tissue Scaffolds

Landon D. Nash; Nicole C. Docherty; Mary Beth Browning Monroe; Kendal P. Ezell; James K. Carrow; Sayyeda M. Hasan; Akhilesh K. Gaharwar; Duncan J. Maitland

Polyurethane shape memory polymer (SMP) foams are proposed for use as thrombogenic scaffolds to improve the treatment of vascular defects, such as cerebral aneurysms. However, gas blown SMP foams inherently have membranes between pores, which can limit their performance as embolic tissue scaffolds. Reticulation, or the removal of membranes between adjacent foam pores, is advantageous for improving device performance by increasing blood permeability and cellular infiltration. This work characterizes the effects of cold gas plasma reticulation processes on bulk polyurethane SMP films and foams. Plasma-induced changes on material properties are characterized using scanning electron microscopy, uniaxial tensile testing, goniometry, and free strain recovery experiments. Device specific performance is characterized in terms of permeability, platelet attachment, and cell-material interactions. Overall, plasma reticulated SMP scaffolds show promise as embolic tissue scaffolds due to increased bulk permeability, retained thrombogenicity, and favorable cell-material interactions.


Journal of Biomedical Materials Research Part A | 2018

Self-assembled, ellipsoidal polymeric nanoparticles for intracellular delivery of therapeutics: SELF-ASSEMBLED, ELLIPSOIDAL POLYMERIC NANOPARTICLES

Prachi Desai; Anjana Venkataramanan; Rebecca Schneider; Manish K. Jaiswal; James K. Carrow; Alberto Purwada; Ankur Singh; Akhilesh K. Gaharwar

Nanoparticle shape has emerged as a key regulator of nanoparticle transport across physiological barriers, intracellular uptake, and biodistribution. We report a facile approach to synthesize ellipsoidal nanoparticles through self-assembly of poly(glycerol sebacate)-co-poly(ethylene glycol) (PGS-co-PEG). The PGS-PEG nanoparticle system is highly tunable, and the semiaxis length of the nanoparticles can be modulated by changing PGS-PEG molar ratio and incorporating therapeutics. As both PGS and PEG are highly biocompatible, the PGS-co-PEG nanoparticles show high hemo-, immuno-, and cytocompatibility. Our data suggest that PGS-co-PEG nanoparticles have the potential for use in a wide range of biomedical applications including regenerative medicine, stem cell engineering, immune modulation, and cancer therapeutics.

Collaboration


Dive into the James K. Carrow's collaboration.

Researchain Logo
Decentralizing Knowledge