James K. McCusker
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James K. McCusker.
Journal of Physical Chemistry Letters | 2011
Nils Huse; Hana Cho; Kiryong Hong; Lindsey Jamula; Frank M. F. de Groot; Tae Kyu Kim; James K. McCusker; Robert W. Schoenlein
We present the first implementation of femtosecond soft X-ray spectroscopy as an ultrafast direct probe of the excited-state valence orbitals in solution-phase molecules. This method is applied to photoinduced spin crossover of [Fe(tren(py)3)](2+), where the ultrafast spin-state conversion of the metal ion, initiated by metal-to-ligand charge-transfer excitation, is directly measured using the intrinsic spin-state selectivity of the soft X-ray L-edge transitions. Our results provide important experimental data concerning the mechanism of ultrafast spin-state conversion and subsequent electronic and structural dynamics, highlighting the potential of this technique to study ultrafast phenomena in the solution phase.
Journal of the American Chemical Society | 2008
Amanda L. Smeigh; Mark Creelman; Richard A. Mathies; James K. McCusker
A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.
Journal of the American Chemical Society | 2010
Nils Huse; Tae Kyu Kim; Lindsey Jamula; James K. McCusker; Frank M. F. de Groot; Robert W. Schoenlein
Solution-phase photoinduced low-spin to high-spin conversion in the Fe(II) polypyridyl complex [Fe(tren(py)(3))](2+) (where tren(py)(3) is tris(2-pyridylmethyliminoethyl)amine) has been studied via picosecond soft X-ray spectroscopy. Following (1)A(1) --> (1)MLCT (metal-to-ligand charge transfer) excitation at 560 nm, changes in the iron L(2)- and L(3)-edges were observed concomitant with formation of the transient high-spin (5)T(2) state. Charge-transfer multiplet calculations coupled with data acquired on low-spin and high-spin model complexes revealed a reduction in ligand field splitting of approximately 1 eV in the high-spin state relative to the singlet ground state. A significant reduction in orbital overlap between the central Fe-3d and the ligand N-2p orbitals was directly observed, consistent with the expected ca. 0.2 A increase in Fe-N bond length upon formation of the high-spin state. The overall occupancy of the Fe-3d orbitals remains constant upon spin crossover, suggesting that the reduction in sigma-donation is compensated by significant attenuation of pi-back-bonding in the metal-ligand interactions. These results demonstrate the feasibility and unique potential of time-resolved soft X-ray absorption spectroscopy to study ultrafast reactions in the liquid phase by directly probing the valence orbitals of first-row metals as well as lighter elements during the course of photochemical transformations.
Nature | 2017
Gregory D. Scholes; Graham R. Fleming; Lin X. Chen; Alán Aspuru-Guzik; Andreas Buchleitner; D. F. Coker; Gregory S. Engel; Rienk van Grondelle; Akihito Ishizaki; David M. Jonas; Jeff S. Lundeen; James K. McCusker; Shaul Mukamel; Jennifer P. Ogilvie; Alexandra Olaya-Castro; Mark A. Ratner; Frank C. Spano; K. Birgitta Whaley; Xiaoyang Zhu
Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.
Chemical Society Reviews | 2016
Daniela M. Arias-Rotondo; James K. McCusker
Recently, the use of transition metal based chromophores as photo-induced single-electron transfer reagents in synthetic organic chemistry has opened up a wealth of possibilities for reinventing known reactions as well as creating new pathways to previously unattainable products. The workhorses for these efforts have been polypyridyl complexes of Ru(ii) and Ir(iii), compounds whose photophysics have been studied for decades within the inorganic community but never extensively applied to problems of interest to organic chemists. While the nexus of synthetic organic and physical-inorganic chemistries holds promise for tremendous new opportunities in both areas, a deeper appreciation of the underlying principles governing the excited-state reactivity of these charge-transfer chromophores is needed. In this Tutorial Review, we present a basic overview of the photophysics of this class of compounds with the goal of explaining the concepts, ground- and excited-state properties, as well as experimental protocols necessary to probe the kinetics and mechanisms of photo-induced electron and/or energy transfer processes.
Science | 2017
Eric R. Welin; Chip Le; Daniela M. Arias-Rotondo; James K. McCusker; David W. C. MacMillan
A nickels worth of transferred energy Traditional organic photochemistry often relies on sensitizers, molecules that efficiently absorb light and then transfer the energy to other compounds to spur reactivity. Welin et al. leveraged this approach to stimulate an organometallic nickel catalyst. They photoexcited an iridium complex with blue light. The ensuing energy transfer to nickel enabled C–O bond formation, coupling aryl halides with carboxylic acids. A similar approach could generate a variety of additional reactivity patterns through photosensitized transition metal catalysis. Science, this issue p. 380 Photoexcited iridium can transfer energy to a nickel catalyst to access a C–O bond-forming pathway. Transition metal catalysis has traditionally relied on organometallic complexes that can cycle through a series of ground-state oxidation levels to achieve a series of discrete yet fundamental fragment-coupling steps. The viability of excited-state organometallic catalysis via direct photoexcitation has been demonstrated. Although the utility of triplet sensitization by energy transfer has long been known as a powerful activation mode in organic photochemistry, it is surprising to recognize that photosensitization mechanisms to access excited-state organometallic catalysts have lagged far behind. Here, we demonstrate excited-state organometallic catalysis via such an activation pathway: Energy transfer from an iridium sensitizer produces an excited-state nickel complex that couples aryl halides with carboxylic acids. Detailed mechanistic studies confirm the role of photosensitization via energy transfer.
Chemical Science | 2010
Joel N. Schrauben; Kevin L. Dillman; Warren F. Beck; James K. McCusker
Vibrational coherence was observed following excitation into the lowest-energy spin-allowed 4A2 → 4T2 ligand-field absorption of Cr(acac)3. The transient kinetics were fit to a rapidly damped 164 cm−1 oscillatory component, the frequency of which is not associated with the ground state of the molecule. The signal is assigned as an excited-state vibrational coherence; the timescale of the event suggests that this vibrational coherence is retained during the 4T2 → 2E intersystem crossing that immediately follows 4A2 → 4T2 excitation. DFT calculations indicate that the 164 cm−1 oscillation likely corresponds to a combination of Cr–O bond stretching in the ligand-field excited state as well as large amplitude motion of the ligand backbone. This hypothesis is supported by ultrafast time-resolved absorption measurements on Cr(t-Bu-acac)3 (where t-Bu-acac is the monoanionic form of 2,2,6,6-tetramethyl-3,5-heptanedione) – an electronically similar but more sterically encumbered molecule – which exhibits a 4T2 → 2E conversion that is more than an order of magnitude slower than that observed for Cr(acac)3. These results provide important insights into the nature of the reaction coordinate that underlies ultrafast excited-state evolution in this prototypical coordination complex.
Inorganic Chemistry | 2014
Lindsey Jamula; Allison M. Brown; Dong Guo; James K. McCusker
Electronic structure theory predicts that, depending on the strength of the ligand field, either the quintet ((5)T2) or triplet ((3)T1) term states can be stabilized as the lowest-energy ligand-field excited state of low-spin octahedral d(6) transition-metal complexes. The (3)T1 state is anticipated for second- and third-row metal complexes and has been established for certain first-row compounds such as [Co(CN)6](3-), but in the case of the widely studied Fe(II) ion, only the (5)T2 state has ever been documented. Herein we report that 2,6-bis(2-carboxypyridyl)pyridine (dcpp), when bound to Fe(II), presents a sufficiently strong ligand field to Fe(II) such that the (5)T2/(3)T1 crossing point of the d(6) configuration is approached if not exceeded. The electrochemical and photophysical properties of [Fe(dcpp)2](2+), in addition to being of fundamental interest, may also have important implications for solar energy conversion strategies that seek to utilize earth-abundant components.
Journal of Physical Chemistry A | 2009
Richard J. Fehir; James K. McCusker
We have carried out a theoretical study of a series of para-substituted phenoxy radicals in an effort to understand the factors influencing spin and charge density distribution in open-shell systems. The calculations reveal that the distribution of spin and charge are not correlated: cases were found for which spin and charge move together, whereas for other substituents the two quantities exhibit spatially distinct intramolecular polarizations. Charge density variations across the series were found to correlate well with both the Hammett (sigma(p)) and Hammett-Brown (sigma(p)+) constants for each substituent, indicating that inductive and/or resonance effects are primarily responsible for the polarization of charge within the molecule. In contrast, the distribution of unpaired spin density could not be adequately accounted for using any of the typical Hammett-type spin delocalization constants cited in the literature. We uncovered an empirical correlation between the polarization of spin density and the alpha-HOMO-alpha-LUMO gap of the substituted phenoxy radicals: this led to the development of a simple model based on a three-electron, two-orbital bonding scheme in which mixing between the HOMO of the substituent and the SOMO of the phenoxy moiety serves to define the nature and extent of unpaired spin polarization throughout the molecule. This analysis yielded a correlation coefficient of r > 0.97 for the 15 substituents examined in the study; spin polarization effects in compounds that exhibited the greatest deviation from this correlation could also be readily explained within the context of the model. The underlying reason for the ability to differentially polarize spin and charge likely stems from the fact that net unpaired spin density is completely carried by the unpaired electron (and thus tracks the spatial characteristics of the SOMO), whereas charge density reflects the behavior of all of the electrons of the system. These results could have implications in the field of molecular magnetism, suggesting a means for synthetically tuning the magnitude of intramolecular exchange interactions, as well as providing guidance for the design of catalysts for radical-radical coupling reactions.
Science | 2011
Dong Guo; Troy E. Knight; James K. McCusker
Spin states restrict energy transfer between donor and acceptor chromophores that appear otherwise compatible. Conservation of angular momentum is a familiar tenet in science but has seldom been invoked to understand (or predict) chemical processes. We have developed a general formalism based on Wigner’s original ideas concerning angular momentum conservation to interpret the photo-induced reactivity of two molecular donor-acceptor assemblies with physical properties synthetically tailored to facilitate intramolecular energy transfer. Steady-state and time-resolved spectroscopic data establishing excited-state energy transfer from a rhenium(I)-based charge-transfer state to a chromium(III) acceptor can be fully accounted for by Förster theory, whereas the corresponding cobalt(III) adduct does not undergo an analogous reaction despite having a larger cross-section for dipolar coupling. Because this pronounced difference in reactivity is easily explained within the context of the angular momentum conservation model, this relatively simple construct may provide a means for systematizing a broad range of chemical reactions.