Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James K. Wheeler is active.

Publication


Featured researches published by James K. Wheeler.


Plant Cell and Environment | 2013

Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism

James K. Wheeler; Brett A. Huggett; Alena N. Tofte; Fulton E. Rockwell; N. Michele Holbrook

We investigated the common assumption that severing stems and petioles under water preserves the hydraulic continuity in the xylem conduits opened by the cut when the xylem is under tension. In red maple and white ash, higher percent loss of conductivity (PLC) in the afternoon occurred when the measurement segment was excised under water at native xylem tensions, but not when xylem tensions were relaxed prior to sample excision. Bench drying vulnerability curves in which measurement samples were excised at native versus relaxed tensions showed a dramatic effect of cutting under tension in red maple, a moderate effect in sugar maple, and no effect in paper birch. We also found that air injection of cut branches (red and sugar maple) at pressures of 0.1 and 1.0 MPa resulted in PLC greater than predicted from vulnerability curves for samples cut 2 min after depressurization, with PLC returning to expected levels for samples cut after 75 min. These results suggest that sampling methods can generate PLC patterns indicative of repair under tension by inducing a degree of embolism that is itself a function of xylem tensions or supersaturation of dissolved gases (air injection) at the moment of sample excision. Implications for assessing vulnerability to cavitation and levels of embolism under field conditions are discussed.


American Journal of Botany | 2006

Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection.

Jarmila Pittermann; John S. Sperry; Uwe G. Hacke; James K. Wheeler; Elzard H. Sikkema

Plant xylem must balance efficient delivery of water to the canopy against protection from air entry into the conduits via air-seeding. We investigated the relationship between tracheid allometry, end wall pitting, safety from air-seeding, and the hydraulic efficiency of conifer wood in order to better understand the trade-offs between effective transport and protection against air entry. Root and stem wood were sampled from conifers belonging to the Pinaceae, Cupressaceae, Podocarpaceae, and Araucariaceae. Hydraulic resistivity of tracheids decreased with increasing tracheid diameter and width, with 64 ± 4% residing in the end wall pitting regardless of tracheid size or phylogenetic affinity. This end-wall percentage was consistent with a near-optimal scaling between tracheid diameter and length that minimized flow resistance for a given tracheid length. There was no evidence that tracheid size and hydraulic efficiency were constrained by the role of the pits in protecting against cavitation by air-seeding. An increase in pit area resistance with safety from cavitation was observed only for species of the northern hemisphere (Pinaceae and Cupressaceae), but this variable was independent of tracheid size, and the increase in pit resistance did not significantly influence tracheid resistance. In contrast to recent work on angiosperm vessels, protection against air-seeding in conifer tracheids appears to be uncoupled from conduit size and conducting efficiency.


Plant Physiology | 2014

Cavitation and its discontents: opportunities for resolving current controversies

Fulton E. Rockwell; James K. Wheeler; N. Michele Holbrook

An understanding of cavitation and the spread of embolism in plant xylem can be viewed from the perspective of physical models of air seeding, the potential for artifacts to interact with natural variation in xylem structure, and new technologies that could lead to their resolution. Cavitation has long been recognized as a key constraint on the structure and functional integrity of the xylem. Yet, recent results call into question how well we understand cavitation in plants. Here, we consider embolism formation in angiosperms at two scales. The first focuses on how air-seeding occurs at the level of pit membranes, raising the question of whether capillary failure is an appropriate physical model. The second addresses methodological uncertainties that affect our ability to infer the formation of embolism and its reversal in plant stems. Overall, our goal is to open up fresh perspectives on the structure-function relationships of xylem.


Journal of Experimental Botany | 2013

Investigating xylem embolism formation, refilling and water storage in tree trunks using frequency domain reflectometry

Guang-You Hao; James K. Wheeler; N. Michele Holbrook; Guillermo Goldstein

Trunks of large trees play an important role in whole-plant water balance but technical difficulties have limited most hydraulic research to small stems, leaves, and roots. To investigate the dynamics of water-related processes in tree trunks, such as winter embolism refilling, xylem hydraulic vulnerability, and water storage, volumetric water content (VWC) in the main stem was monitored continuously using frequency domain moisture sensors in adult Betula papyrifera trees from early spring through the beginning of winter. An air injection technique was developed to estimate hydraulic vulnerability of the trunk xylem. Trunk VWC increased in early spring and again in autumn, concurrently with root pressure during both seasons. Diurnal fluctuations and a gradual decrease in trunk VWC through the growing season were observed, which, in combination with VWC increase after significant rainfall events and depletion during periods of high water demand, indicate the importance of stem water storage in both short- and long-term water balance. Comparisons between the trunk air injection results and conventional branch hydraulic vulnerability curves showed no evidence of ‘vulnerability segmentation’ between the main stem and small branches in B. papyrifera. Measurements of VWC following air injection, together with evidence from air injection and xylem dye perfusion, indicate that embolized vessels can be refilled by active root pressure but not in the absence of root pressure. The precise, continuous, and non-destructive measurement of wood water content using frequency domain sensors provides an ideal way to probe many hydraulic processes in large tree trunks that are otherwise difficult to investigate.


Plant Physiology | 2014

Reversible Deformation of Transfusion Tracheids in Taxus baccata Is Associated with a Reversible Decrease in Leaf Hydraulic Conductance

Yong-Jiang Zhang; Fulton E. Rockwell; James K. Wheeler; N. Michele Holbrook

The reversible collapse of leaf transfusion tracheids of Taxus baccata under desiccation is related to reversible declines in leaf hydraulic conductance, suggesting a circuit breaker-like function that protects the xylem from excessive tensions. Declines in leaf hydraulic conductance (Kleaf) with increasing water stress have been attributed to cavitation of the leaf xylem. However, in the leaves of conifers, the reversible collapse of transfusion tracheids may provide an alternative explanation. Using Taxus baccata, a conifer species without resin, we developed a modified rehydration technique that allows the separation of declines in Kleaf into two components: one reversible and one irreversible upon relaxation of water potential to −1 MPa. We surveyed leaves at a range of water potentials for evidence of cavitation using cryo-scanning electron microscopy and quantified dehydration-induced structural changes in transfusion tracheids by cryo-fluorescence microscopy. Irreversible declines in Kleaf did not occur until leaf water potentials were more negative than −3 MPa. Declines in Kleaf between −2 and −3 MPa were reversible and accompanied by the collapse of transfusion tracheids, as evidenced by cryo-fluorescence microscopy. Based on cryo-scanning electron microscopy, cavitation of either transfusion or xylem tracheids did not contribute to declines in Kleaf in the reversible range. Moreover, the deformation of transfusion tracheids was quickly reversible, thus acting as a circuit breaker regulating the flux of water through the leaf vasculature. As transfusion tissue is present in all gymnosperms, the reversible collapse of transfusion tracheids may be a general mechanism in this group for the protection of leaf xylem from excessive loads generated in the living leaf tissue.


Global Change Biology | 2017

Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees

Thomas L. Powell; James K. Wheeler; Alex A. R. Oliveira; Antonio Carlos Lola da Costa; Scott R. Saleska; Patrick Meir; Paul R. Moorcroft

Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large-scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem-P50 ), leaf turgor loss point (TLP), cellular osmotic potential (πo ), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought-tolerant versus drought-intolerant based on observed mortality rates, and subdivided into early- versus late-successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem-P50 , TLP, and πo , but not ε, occurred at significantly higher water potentials for the drought-intolerant PFT compared to the drought-tolerant PFT; however, there were no significant differences between the early- and late-successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density-a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought-tolerant and drought-intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry-season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co-occuring drought-tolerant and drought-intolerant tropical tree species promises to facilitate a much-needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests.


New Phytologist | 2016

Not dead yet: the seasonal water relations of two perennial ferns during California's exceptional drought

Alex Baer; James K. Wheeler; Jarmila Pittermann

The understory of the redwood forests of Californias coast harbors perennial ferns, including Polystichum munitum and Dryopteris arguta. Unusual for ferns, these species are adapted to the characteristic Mediterranean-type dry season, but the mechanisms of tolerance have not been studied. The water relations of P. munitum and D. arguta were surveyed for over a year, including measures of water potential (Ψ), stomatal conductance (gs) and frond stipe hydraulic conductivity (K). A dehydration and re-watering experiment on potted P. munitum plants corroborated the field data. The seasonal Ψ varied from 0 to below -3 MPa in both species, with gs and K generally tracking Ψ; the loss of K rarely exceeded 80%. Quantile regression analysis showed that, at the 0.1 quantile, 50% of K was lost at -2.58 and -3.84 MPa in P. munitum and D. arguta, respectively. The hydraulic recovery of re-watered plants was attributed to capillarity. The seasonal water relations of P. munitum and D. arguta are variable, but consistent with laboratory-based estimates of drought tolerance. Hydraulic and Ψ recovery following rain allows perennial ferns to survive severe drought, but prolonged water deficit, coupled with insect damage, may hamper frond survival. The legacy effects of drought on reproductive capacity and community dynamics are unknown.


Functional Plant Biology | 2014

The role of leaf hydraulic conductance dynamics on the timing of leaf senescence

Juan Pablo Giraldo; James K. Wheeler; Brett A. Huggett; N. Michele Holbrook

We tested the hypothesis that an age-dependent reduction in leaf hydraulic conductance (Kleaf) influences the timing of leaf senescence via limitation of the stomatal aperture on xylem compound delivery to leaves of tomato (Solanum lycopersicum L.), the tropical trees Anacardium excelsum Kunth, Pittoniotis trichantha Griseb, and the temperate trees Acer saccharum Marsh. and Quercus rubra L. The onset of leaf senescence was preceded by a decline in Kleaf in tomato and the tropical trees, but not in the temperate trees. Age-dependent changes in Kleaf in tomato were driven by a reduction in leaf vein density without a proportional increase in the xylem hydraulic supply. A decline in stomatal conductance accompanied Kleaf reduction with age in tomato but not in tropical and temperate tree species. Experimental manipulations that reduce the flow of xylem-transported compounds into leaves with open stomata induced early leaf senescence in tomato and A. excelsum, but not in P. trichantha, A. saccharum and Q. rubra leaves. We propose that in tomato, a reduction in Kleaf limits the delivery of xylem-transported compounds into the leaves, thus making them vulnerable to senescence. In the tropical evergreen tree A. excelsum, xylem-transported compounds may play a role in signalling the timing of senescence but are not under leaf hydraulic regulation; leaf senescence in the deciduous trees A. trichanta, A. saccharum and Q. rubra is not influenced by leaf vascular transport.


Frontiers in Plant Science | 2018

Geometry, Allometry and Biomechanics of Fern Leaf Petioles: Their Significance for the Evolution of Functional and Ecological Diversity Within the Pteridaceae

Jennifer N. Mahley; Jarmila Pittermann; Nick Rowe; Alex Baer; James E. Watkins; Eric Schuettpelz; James K. Wheeler; Klaus Mehltreter; Michael D. Windham; Weston L. Testo; James B. Beck

Herbaceous plants rely on a combination of turgor, ground tissues and geometry for mechanical support of leaves and stems. Unlike most angiosperms however, ferns employ a sub-dermal layer of fibers, known as a hypodermal sterome, for support of their leaves. The sterome is nearly ubiquitous in ferns, but nothing is known about its role in leaf biomechanics. The goal of this research was to characterize sterome attributes in ferns that experience a broad range of mechanical stresses, as imposed by their aquatic, xeric, epiphytic, and terrestrial niches. Members of the Pteridaceae meet this criteria well. The anatomical and functional morphometrics along with published values of tissue moduli were used to model petiole flexural rigidity and susceptibility to buckling in 20 species of the Pteridaceae. Strong allometric relationships were observed between sterome thickness and leaf size, with the sterome contributing over 97% to petiole flexural rigidity. Surprisingly, the small-statured cheilanthoid ferns allocated the highest fraction of their petiole to the sterome, while large leaves exploited aspects of geometry (second moment of area) to achieve bending resistance. This pattern also revealed an economy of function in which increasing sterome thickness was associated with decreasing fiber cell reinforcement, and fiber wall fraction. Lastly, strong petioles were associated with durable leaves, as approximated by specific leaf area. This study reveals meaningful patterns in fern leaf biomechanics that align with species leaf size, sterome attributes and life-history strategy.


Tree Physiology | 2006

Scaling of angiosperm xylem structure with safety and efficiency

Uwe G. Hacke; John S. Sperry; James K. Wheeler; Laura Castro

Collaboration


Dive into the James K. Wheeler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Baer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guang-You Hao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge