Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James L. Burford is active.

Publication


Featured researches published by James L. Burford.


Journal of The American Society of Nephrology | 2012

Loss of the Endothelial Glycocalyx Links Albuminuria and Vascular Dysfunction

Andrew H.J. Salmon; Joanne K. Ferguson; James L. Burford; Haykanush Gevorgyan; Daisuke Nakano; Steven J. Harper; David O. Bates; Janos Peti-Peterdi

Patients with albuminuria and CKD frequently have vascular dysfunction but the underlying mechanisms remain unclear. Because the endothelial surface layer, a meshwork of surface-bound and loosely adherent glycosaminoglycans and proteoglycans, modulates vascular function, its loss could contribute to both renal and systemic vascular dysfunction in proteinuric CKD. Using Munich-Wistar-Fromter (MWF) rats as a model of spontaneous albuminuric CKD, multiphoton fluorescence imaging and single-vessel physiology measurements revealed that old MWF rats exhibited widespread loss of the endothelial surface layer in parallel with defects in microvascular permeability to both water and albumin, in both continuous mesenteric microvessels and fenestrated glomerular microvessels. In contrast to young MWF rats, enzymatic disruption of the endothelial surface layer in old MWF rats resulted in neither additional loss of the layer nor additional changes in permeability. Intravenous injection of wheat germ agglutinin lectin and its adsorption onto the endothelial surface layer significantly improved glomerular albumin permeability. Taken together, these results suggest that widespread loss of the endothelial surface layer links albuminuric kidney disease with systemic vascular dysfunction, providing a potential therapeutic target for proteinuric kidney disease.


Nature Medicine | 2013

Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in new mouse models with fluorescent lineage tags

Matthias J. Hackl; James L. Burford; Karie Villanueva; Lisa Lam; Katalin Susztak; Bernhard Schermer; Thomas Benzing; Janos Peti-Peterdi

Podocytes are critical in the maintenance of a healthy glomerular filter; however, they have been difficult to study in the intact kidney because of technical limitations. Here we report the development of serial multiphoton microscopy (MPM) of the same glomeruli over several days to visualize the motility of podocytes and parietal epithelial cells (PECs) in vivo. In podocin-GFP mice, podocytes formed sporadic multicellular clusters after unilateral ureteral ligation and migrated into the parietal Bowmans capsule. The tracking of single cells in podocin-confetti mice featuring cell-specific expression of CFP, GFP, YFP or RFP revealed the simultaneous migration of multiple podocytes. In phosphoenolpyruvate carboxykinase (PEPCK)-GFP mice, serial MPM found PEC-to-podocyte migration and nanotubule connections. Our data support a highly dynamic rather than a static nature of the glomerular environment and cellular composition. Future application of this new approach should advance our understanding of the mechanisms of glomerular injury and regeneration.


Journal of The American Society of Nephrology | 2012

Multiphoton Imaging of the Glomerular Permeability of Angiotensinogen

Daisuke Nakano; Hiroyuki Kobori; James L. Burford; Haykanush Gevorgyan; Saskia Seidel; Hirofumi Hitomi; Akira Nishiyama; Janos Peti-Peterdi

Patients and animals with renal injury exhibit increased urinary excretion of angiotensinogen. Although increased tubular synthesis of angiotensinogen contributes to the increased excretion, we do not know to what degree glomerular filtration of systemic angiotensinogen, especially through an abnormal glomerular filtration barrier, contributes to the increase in urinary levels. Here, we used multiphoton microscopy to visualize and quantify the glomerular permeability of angiotensinogen in the intact mouse and rat kidney. In healthy mice and Munich-Wistar-Frömter rats at the early stage of glomerulosclerosis, the glomerular sieving coefficient of systemically infused Atto565-labeled human angiotensinogen (Atto565-hAGT), which rodent renin cannot cleave, was only 25% of the glomerular sieving coefficient of albumin, and its urinary excretion was undetectable. In a more advanced phase of kidney disease, the glomerular permeability of Atto565-hAGT was slightly higher but still very low. Furthermore, unlike urinary albumin, the significantly higher urinary excretion of endogenous rat angiotensinogen did not correlate with either the Atto565-hAGT or Atto565-albumin glomerular sieving coefficients. These results strongly suggest that the vast majority of urinary angiotensinogen originates from the tubules rather than glomerular filtration.


American Journal of Physiology-renal Physiology | 2012

The first decade of using multiphoton microscopy for high-power kidney imaging

Janos Peti-Peterdi; James L. Burford; Matthias J. Hackl

In this review, we highlight the major scientific breakthroughs in kidney research achieved using multiphoton microscopy (MPM) and summarize the milestones in the technological development of kidney MPM during the past 10 years. Since more and more renal laboratories invest in MPM worldwide, we discuss future directions and provide practical, useful tips and examples for the application of this still-emerging optical sectioning technology. Advantages of using MPM in various kidney preparations that range from freshly dissected individual glomeruli or the whole kidney in vitro to MPM of the intact mouse and rat kidney in vivo are reviewed. Potential combinations of MPM with micromanipulation techniques including microperfusion and micropuncture are also included. However, we emphasize the most advanced and complex, quantitative in vivo imaging applications as the ultimate use of MPM since the true mandate of this technology is to look inside intact organs in live animals and humans.


American Journal of Physiology-renal Physiology | 2009

Postischemic inflammatory syndrome: a critical mechanism of progression in diabetic nephropathy

Katherine J. Kelly; James L. Burford; Jesus H. Dominguez

Diabetes is a major epidemic, and diabetic nephropathy is the most common cause of end-stage renal disease. Two critical components of diabetic nephropathy are persistent inflammation and chronic renal ischemia from widespread vasculopathy. Moreover, acute ischemic renal injury is common in diabetes, potentially causing chronic kidney disease or end-stage renal disease. Accordingly, we tested the hypothesis that acute renal ischemia accelerates nephropathy in diabetes by activating proinflammatory pathways. Lean and obese-diabetic ZS rats (F(1) hybrids of spontaneously hypertensive heart failure and Zucker fatty diabetic rats) were subjected to bilateral renal ischemia or sham surgery before the onset of proteinuria. The postischemic state in rats with obesity-diabetes was characterized by progressive chronic renal failure, increased proteinuria, and renal expression of proinflammatory mediators. Leukocyte number in obese-diabetic rat kidney was markedly increased for months after ischemia. Intrarenal blood flow velocity was decreased after ischemia in lean control and obese-diabetic rats, although it recovered in lean rats. At 2 mo after ischemia, blood flow velocity decreased further in sham-surgery and postischemia obese-diabetic rats, so that RBC flow velocity was only 39% of control in the obese-diabetic rats after ischemia. In addition, microvascular density remained depressed at 2 mo in kidneys of obese-diabetic rats after ischemia. Abnormal microvascular permeability and increases in interstitial fibrosis and apoptotic renal cell death were also more pronounced after ischemia in obese-diabetic rats. These data support the hypothesis that acute renal ischemia in obesity-diabetes severely aggravates chronic inflammation and vasculopathy, creating a self-perpetuating postischemia inflammatory syndrome, which accelerates renal failure.


Journal of Clinical Investigation | 2014

Intravital imaging of podocyte calcium in glomerular injury and disease

James L. Burford; Karie Villanueva; Lisa Lam; Anne Riquier-Brison; Matthias J. Hackl; Jeffrey W. Pippin; Stuart J. Shankland; Janos Peti-Peterdi

Intracellular calcium ([Ca²⁺]i) signaling mediates physiological and pathological processes in multiple organs, including the renal podocyte; however, in vivo podocyte [Ca²⁺]i dynamics are not fully understood. Here we developed an imaging approach that uses multiphoton microscopy (MPM) to directly visualize podocyte [Ca²⁺]i dynamics within the intact kidneys of live mice expressing a fluorescent calcium indicator only in these cells. [Ca²⁺]i was at a low steady-state level in control podocytes, while Ang II infusion caused a minor elevation. Experimental focal podocyte injury triggered a robust and sustained elevation of podocyte [Ca²⁺]i around the injury site and promoted cell-to-cell propagating podocyte [Ca²⁺]i waves along capillary loops. [Ca²⁺]i wave propagation was ameliorated by inhibitors of purinergic [Ca²⁺]i signaling as well as in animals lacking the P2Y2 purinergic receptor. Increased podocyte [Ca²⁺]i resulted in contraction of the glomerular tuft and increased capillary albumin permeability. In preclinical models of renal fibrosis and glomerulosclerosis, high podocyte [Ca²⁺]i correlated with increased cell motility. Our findings provide a visual demonstration of the in vivo importance of podocyte [Ca²⁺]i in glomerular pathology and suggest that purinergic [Ca²⁺]i signaling is a robust and key pathogenic mechanism in podocyte injury. This in vivo imaging approach will allow future detailed investigation of the molecular and cellular mechanisms of glomerular disease in the intact living kidney.


PLOS ONE | 2013

A Novel Source of Cultured Podocytes

Stefano Da Sacco; Kevin V. Lemley; Sargis Sedrakyan; Ilenia Zanusso; Astgik Petrosyan; Janos Peti-Peterdi; James L. Burford; Roger E. De Filippo; Laura Perin

Amniotic fluid is in continuity with multiple developing organ systems, including the kidney. Committed, but still stem-like cells from these organs may thus appear in amniotic fluid. We report having established for the first time a stem-like cell population derived from human amniotic fluid and possessing characteristics of podocyte precursors. Using a method of triple positive selection we obtained a population of cells (hAKPC-P) that can be propagated in vitro for many passages without immortalization or genetic manipulation. Under specific culture conditions, these cells can be differentiated to mature podocytes. In this work we compared these cells with conditionally immortalized podocytes, the current gold standard for in vitro studies. After in vitro differentiation, both cell lines have similar expression of the major podocyte proteins, such as nephrin and type IV collagen, that are characteristic of mature functional podocytes. In addition, differentiated hAKPC-P respond to angiotensin II and the podocyte toxin, puromycin aminonucleoside, in a way typical of podocytes. In contrast to immortalized cells, hAKPC-P have a more nearly normal cell cycle regulation and a pronounced developmental pattern of specific protein expression, suggesting their suitability for studies of podocyte development for the first time in vitro. These novel progenitor cells appear to have several distinct advantages for studies of podocyte cell biology and potentially for translational therapies.


Frontiers in Physiology | 2013

ATP Releasing Connexin 30 Hemichannels Mediate Flow-Induced Calcium Signaling in the Collecting Duct

Per Svenningsen; James L. Burford; Janos Peti-Peterdi

ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD) and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30−/− mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca2+]i) signaling in the CD. Cortical CDs (CCDs) from wild type and Cx30−/− mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca2+]i in wild type CCDs. This response was blunted in Cx30−/− CCDs ([Ca2+]i increased only 1.2-fold, p < 0.0001 vs. WT, n = 6 each). To further test our hypothesis we performed CD [Ca2+]i imaging in intact mouse kidneys in vivo using multiphoton microscopy and micropuncture delivery of the calcium-sensitive fluorophore Rhod-2. We found intrinsic, spontaneous [Ca2+]i oscillations in free-flowing CDs of wild type but not Cx30−/− mice. The [Ca2+]i oscillations were sensitive also to P2-receptor inhibition by suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption.


Journal of Clinical Investigation | 2017

Laminar flow downregulates Notch activity to promote lymphatic sprouting

Dongwon Choi; Eunkyung Park; Eunson Jung; Young Jin Seong; Jaehyuk Yoo; Esak Lee; Mingu Hong; Sunju Lee; Hiroaki Ishida; James L. Burford; Janos Peti-Peterdi; Ralf H. Adams; Sonal Srikanth; Yousang Gwack; Christopher S. Chen; Hans J. Vogel; Chester J. Koh; Alex K. Wong; Young-Kwon Hong

The major function of the lymphatic system is to drain interstitial fluid from tissue. Functional drainage causes increased fluid flow that triggers lymphatic expansion, which is conceptually similar to hypoxia-triggered angiogenesis. Here, we have identified a mechanotransduction pathway that translates laminar flow–induced shear stress to activation of lymphatic sprouting. While low-rate laminar flow commonly induces the classic shear stress responses in blood endothelial cells and lymphatic endothelial cells (LECs), only LECs display reduced Notch activity and increased sprouting capacity. In response to flow, the plasma membrane calcium channel ORAI1 mediates calcium influx in LECs and activates calmodulin to facilitate a physical interaction between Krüppel-like factor 2 (KLF2), the major regulator of shear responses, and PROX1, the master regulator of lymphatic development. The PROX1/KLF2 complex upregulates the expression of DTX1 and DTX3L. DTX1 and DTX3L, functioning as a heterodimeric Notch E3 ligase, concertedly downregulate NOTCH1 activity and enhance lymphatic sprouting. Notably, overexpression of the calcium reporter GCaMP3 unexpectedly inhibited lymphatic sprouting, presumably by disturbing calcium signaling. Endothelial-specific knockouts of Orai1 and Klf2 also markedly impaired lymphatic sprouting. Moreover, Dtx3l loss of function led to defective lymphatic sprouting, while Dtx3l gain of function rescued impaired sprouting in Orai1 KO embryos. Together, the data reveal a molecular mechanism underlying laminar flow–induced lymphatic sprouting.


American Journal of Physiology-renal Physiology | 2014

Local pH domains regulate NHE3-mediated Na+ reabsorption in the renal proximal tubule

Jens Christian Brasen; James L. Burford; Alicia A. McDonough; Niels-Henrik Holstein-Rathlou; Janos Peti-Peterdi

The proximal tubule Na(+)/H(+) exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provoke pressure natriuresis; however, it is unclear how NHE3 redistribution per se reduces NHE3 activity. To investigate if the distribution of NHE3 in the brush border can change the reabsorption rate, we constructed a spatiotemporal mathematical model of NHE3-mediated Na(+) reabsorption across a proximal tubule cell and compared the model results with in vivo experiments in rats. The model predicts that when NHE3 is localized exclusively at the base of the brush border, it creates local pH microdomains that reduce NHE3 activity by >30%. We tested the models prediction experimentally: the rat kidney cortex was loaded with the pH-sensitive fluorescent dye BCECF, and cells of the proximal tubule were imaged in vivo using confocal fluorescence microscopy before and after an increase of blood pressure by ∼50 mmHg. The experimental results supported the model by demonstrating that a rise of blood pressure induces the development of pH microdomains near the bottom of the brush border. These local changes in pH reduce NHE3 activity, which may explain the pressure natriuresis response to NHE3 redistribution.

Collaboration


Dive into the James L. Burford's collaboration.

Top Co-Authors

Avatar

Janos Peti-Peterdi

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Young-Kwon Hong

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Haykanush Gevorgyan

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Lisa Lam

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Riquier-Brison

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Georgina Gyarmati

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Karie Villanueva

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Alex K. Wong

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Alicia A. McDonough

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge