Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James L. Cole is active.

Publication


Featured researches published by James L. Cole.


Methods in Cell Biology | 2008

Analytical Ultracentrifugation: Sedimentation Velocity and Sedimentation Equilibrium

James L. Cole; Jeffrey W. Lary; Thomas P. Moody; Thomas M. Laue

Analytical ultracentrifugation (AUC) is a versatile and powerful method for the quantitative analysis of macromolecules in solution. AUC has broad applications for the study of biomacromolecules in a wide range of solvents and over a wide range of solute concentrations. Three optical systems are available for the analytical ultracentrifuge (absorbance, interference, and fluorescence) that permit precise and selective observation of sedimentation in real time. In particular, the fluorescence system provides a new way to extend the scope of AUC to probe the behavior of biological molecules in complex mixtures and at high solute concentrations. In sedimentation velocity (SV), the movement of solutes in high centrifugal fields is interpreted using hydrodynamic theory to define the size, shape, and interactions of macromolecules. Sedimentation equilibrium (SE) is a thermodynamic method where equilibrium concentration gradients at lower centrifugal fields are analyzed to define molecule mass, assembly stoichiometry, association constants, and solution nonideality. Using specialized sample cells and modern analysis software, researchers can use SV to determine the homogeneity of a sample and define whether it undergoes concentration-dependent association reactions. Subsequently, more thorough model-dependent analysis of velocity and equilibrium experiments can provide a detailed picture of the nature of the species present in solution and their interactions.


Journal of Biological Chemistry | 2003

Inhibition of HIV-1 Ribonuclease H by a Novel Diketo Acid, 4-[5-(Benzoylamino)thien-2-yl]-2,4-dioxobutanoic Acid

Cathryn A. Shaw-Reid; Vandna Munshi; Pia L. Graham; Abigail Wolfe; Marc Witmer; Renee Danzeisen; David B. Olsen; Steven S. Carroll; Mark W. Embrey; John S. Wai; Michael D. Miller; James L. Cole; Daria J. Hazuda

Human immunodeficiency virus-type 1 (HIV-1) reverse transcriptase (RT) coordinates DNA polymerization and ribonuclease H (RNase H) activities using two discrete active sites embedded within a single heterodimeric polyprotein. We have identified a novel thiophene diketo acid, 4-[5-(benzoylamino)thien-2-yl]-2,4-dioxobutanoic acid, that selectively inhibits polymerase-independent RNase H cleavage (IC50 = 3.2 μm) but has no effect on DNA polymerization (IC50 > 50 μm). The activity profile of the diketo acid is shown to be distinct from previously described compounds, including the polymerase inhibitor foscarnet and the putative RNase H inhibitor 4-chlorophenylhydrazone. Both foscarnet and the hydrazone inhibit RNase H cleavage and DNA polymerization activities of RT, yet neither inhibits the RNase H activity of RT containing a mutation in the polymerase active site (D185N) or an isolated HIV-1 RNase H domain chimera containing the α-C helix from Escherichia coli RNase HI, suggesting these compounds affect RNase H indirectly. In contrast, the diketo acid inhibits the RNase H activity of the isolated RNase H domain as well as full-length RT, and inhibition is not affected by the polymerase active site mutation. In isothermal titration calorimetry studies using the isolated RNase H domain, binding of the diketo acid is independent of nucleic acid but strictly requires Mn2+implying a direct interaction between the inhibitor and the RNase H active site. These studies demonstrate that inhibition of HIV-1 RNase H may occur by either direct or indirect mechanisms, and they provide a framework for identifying novel agents such as 4-[5-(benzoylamino)thien- 2-yl]-2,4-dioxobutanoic acid that specifically targets RNase H.


Methods in Enzymology | 2004

Analysis of Heterogeneous Interactions

James L. Cole

Publisher Summary This chapter presents the mathematical formalism to describe heterogeneous equilibria, with particular attention to the relationship between the macroscopic and microscopic equilibrium constants. Identification and characterization of critical macromolecular interactions within the cell are central research problems of the postgenomic era. Quantitative methods capable of accurately defining the stoichiometry, affinity, cooperativity, and thermodynamics are required for a fundamental mechanistic understanding and to effectively target molecular interactions for therapeutic intervention. Although many biologically significant interactions involve association of identical subunits, a much larger class of binding events involves interactions of dissimilar partners. Rigorous investigation of heterogeneous interactions presents particular challenges for experimental design, data analysis, and interpretation. Heterogeneous interactions involve at least two distinct macromolecular components. The features of several biophysical methods that are commonly used to characterize heterogeneous interactions are compared. Equilibrium and velocity analytical ultracentrifugation are particularly useful as baseline methods to define assembly models and extract equilibrium parameters. The focus in this chapter is on sedimentation equilibrium and this approach is illustrated with an analysis of a nonspecific protein–nucleic acid interaction.


Journal of Molecular Biology | 2008

Mechanism of PKR Activation by dsRNA

Peter A. Lemaire; Eric Anderson; Jeffrey W. Lary; James L. Cole

Protein kinase R (PKR) is a central component of the interferon antiviral defense pathway. Upon binding double-stranded RNA (dsRNA), PKR undergoes autophosphorylation reactions that activate the kinase. PKR then phosphorylates eukaryotic initiation factor 2alpha, thus inhibiting protein synthesis in virally infected cells. Using a series of dsRNAs of increasing length, we define the mechanism of PKR activation. A minimal dsRNA of 30 bp is required to bind two PKR monomers and 30 bp is the smallest dsRNA that elicits autophosphorylation activity. Thus, the ability of dsRNAs to function as PKR activators is correlated with binding of two or more PKR monomers. Sedimentation velocity data fit a model where PKR monomers sequentially attach to a single dsRNA. These results support an activation mechanism where the role of the dsRNA is to bring two or more PKR monomers in close proximity to enhance dimerization via the kinase domain. This model explains the inhibition observed at high dsRNA concentrations and the strong dependence of maximum activation on dsRNA binding affinity. Binding affinities increase dramatically upon reducing the salt concentration from 200 to 75 mM NaCl and we observe that a second PKR can bind to the 20-bp dsRNA. Nonspecific assembly of PKR on dsRNA occurs stochastically without apparent cooperativity.


Biochemistry | 2001

HU Binding to DNA: Evidence for Multiple Complex Formation and DNA Bending

Kristi Wojtuszewski; Mary E. Hawkins; James L. Cole; Ishita Mukerji

HU, a nonspecific histone-like DNA binding protein, participates in a number of genomic events as an accessory protein and forms multiple complexes with DNA. The HU-DNA binding interaction was characterized by fluorescence, generated with the guanosine analogue 3-methyl-8-(2-deoxy-beta-D-ribofuranosyl)isoxanthopterin (3-MI) directly incorporated into DNA duplexes. The stoichiometry and equilibrium binding constants of complexes formed between HU and 13 and 34 bp DNA duplexes were determined using fluorescence anisotropy and analytical ultracentrifugation. These measurements reveal that three HU molecules bind to the 34 bp duplexes, while two HU molecules bind to the 13 bp duplex. The data are well described by an independent binding site model, and the association constants for the first binding event for both duplexes are similar (approximately 1 x 10(6) M(-1)), indicating that HU binding affinity is independent of duplex length. Further analysis of the binding curves in terms of a nonspecific binding model is indicative that HU binding to DNA exhibits little to no cooperativity. The fluorescence intensity also increases upon HU binding, consistent with decreased base stacking and increased solvent exposure of the 3-MI fluorescence probe. These results are suggestive of a local bending or unwinding of the DNA. On the basis of these results we propose a model in which bending of DNA accompanies HU binding. Up to five complex bands are observed in gel mobility shift assays of HU binding to the 34 bp duplexes. We suggest that protein-induced bending of the DNA leads to the observation of complexes in the gel, which have the same molecular weight but different relative mobilities.


Journal of Molecular Biology | 2009

RNA dimerization promotes PKR dimerization and activation.

Laurie A. Heinicke; C. Jason Wong; Jeffrey W. Lary; Subba Rao Nallagatla; Amy Diegelman-Parente; Xiaofeng Zheng; James L. Cole; Philip C. Bevilacqua

The double-stranded RNA (dsRNA)-activated protein kinase [protein kinase R (PKR)] plays a major role in the innate immune response in humans. PKR binds dsRNA non-sequence specifically and requires a minimum of 15-bp dsRNA for one protein to bind and 30-bp dsRNA to induce protein dimerization and activation by autophosphorylation. PKR phosphorylates eukaryotic initiation factor 2alpha, a translation initiation factor, resulting in the inhibition of protein synthesis. We investigated the mechanism of PKR activation by an RNA hairpin with a number of base pairs intermediate between these 15- to 30-bp limits: human immunodeficiency virus type 1 transactivation-responsive region (TAR) RNA, a 23-bp hairpin with three bulges that is known to dimerize. TAR monomers and dimers were isolated from native gels and assayed for RNA and protein dimerization to test whether RNA dimerization affects PKR dimerization and activation. To modulate the extent of dimerization, we included TAR mutants with different secondary features. Native gel mixing experiments and analytical ultracentrifugation indicate that TAR monomers bind one PKR monomer and that TAR dimers bind two or three PKRs, demonstrating that RNA dimerization drives the binding of multiple PKR molecules. Consistent with functional dimerization of PKR, TAR dimers activated PKR while TAR monomers did not, and RNA dimers with fewer asymmetrical secondary-structure defects, as determined by enzymatic structure mapping, were more potent activators. Thus, the secondary-structure defects in the TAR RNA stem function as antideterminants to PKR binding and activation. Our studies support that dimerization of a 15- to 30-bp hairpin RNA, which effectively doubles its length, is a key step in driving activation of PKR and provide a model for how RNA folding can be related to human disease.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Structure of CD84 provides insight into SLAM family function

Qingrong Yan; Vladimir N. Malashkevich; Alexander A. Fedorov; Elena V. Fedorov; Erhu Cao; Jeffrey W. Lary; James L. Cole; Stanley G. Nathenson; Steven C. Almo

The signaling lymphocyte activation molecule (SLAM) family includes homophilic and heterophilic receptors that modulate both adaptive and innate immune responses. These receptors share a common ectodomain organization: a membrane-proximal immunoglobulin constant domain and a membrane-distal immunoglobulin variable domain that is responsible for ligand recognition. CD84 is a homophilic family member that enhances IFN-γ secretion in activated T cells. Our solution studies revealed that CD84 strongly self-associates with a Kd in the submicromolar range. These data, in combination with previous reports, demonstrate that the SLAM family homophilic affinities span at least three orders of magnitude and suggest that differences in the affinities may contribute to the distinct signaling behavior exhibited by the individual family members. The 2.0 Å crystal structure of the human CD84 immunoglobulin variable domain revealed an orthogonal homophilic dimer with high similarity to the recently reported homophilic dimer of the SLAM family member NTB-A. Structural and chemical differences in the homophilic interfaces provide a mechanism to prevent the formation of undesired heterodimers among the SLAM family homophilic receptors. These structural data also suggest that, like NTB-A, all SLAM family homophilic dimers adopt a highly kinked organization spanning an end-to-end distance of ≈140 Å. This common molecular dimension provides an opportunity for all two-domain SLAM family receptors to colocalize within the immunological synapse and bridge the T cell and antigen-presenting cell.


Biochimica et Biophysica Acta | 1987

Assignment of the g = 4.1 ERP signal to manganese in the S2 state of the photosynthetic oxygen-evolving complex: An X-ray absorption edge spectroscopy study☆

James L. Cole; Vittal K. Yachandra; R.D. Guiles; Ann E. McDermott; R. David Britt; S. L. Dexheimer; Kenneth Sauer; Melvin P. Klein

X-ray absorption spectroscopy at the Mn K-edge has been utilized to study the origin of the g = 4.1 EPR signal associated with the Mn-containing photosynthetic O2-evolving complex. Formation of the g = 4.1 signal by illumination of Photosystem II preparations at 140 K is associated with a shift of the Mn edge inflection point to higher energy. This shift is similar to that observed upon formation of the S2 multiline EPR signal by 190 K illumination. The g = 4.1 signal is assigned to the Mn complex in the S2 state.


Journal of Biological Chemistry | 2008

DOMAIN ARCHITECTURE AND BIOCHEMICAL CHARACTERIZATION OF VERTEBRATE MCM10

Patrick D. Robertson; Eric M. Warren; Haijiang Zhang; David B. Friedman; Jeffrey W. Lary; James L. Cole; Antonin V. Tutter; Johannes C. Walter; Ellen Fanning; Brandt F. Eichman

Mcm10 plays a key role in initiation and elongation of eukaryotic chromosomal DNA replication. As a first step to better understand the structure and function of vertebrate Mcm10, we have determined the structural architecture of Xenopus laevis Mcm10 (xMcm10) and characterized each domain biochemically. Limited proteolytic digestion of the full-length protein revealed N-terminal-, internal (ID)-, and C-terminal (CTD)-structured domains. Analytical ultracentrifugation revealed that xMcm10 self-associates and that the N-terminal domain forms homodimeric assemblies. DNA binding activity of xMcm10 was mapped to the ID and CTD, each of which binds to single- and double-stranded DNA with low micromolar affinity. The structural integrity of xMcm10-ID and CTD is dependent on the presence of bound zinc, which was experimentally verified by atomic absorption spectroscopy and proteolysis protection assays. The ID and CTD also bind independently to the N-terminal 323 residues of the p180 subunit of DNA polymerase α-primase. We propose that the modularity of the protein architecture, with discrete domains for dimerization and for binding to DNA and DNA polymerase α-primase, provides an effective means for coordinating the biochemical activities of Mcm10 within the replisome.


Journal of Molecular Biology | 2009

Analysis of PKR Structure by Small-Angle Scattering

Jennifer VanOudenhove; Eric Anderson; Susan Krueger; James L. Cole

Protein kinase R (PKR) is a key component of the interferon antiviral defense pathway. Upon binding double-stranded RNA, PKR undergoes autophosphorylation reactions that activate the kinase. PKR contains an N-terminal double-stranded RNA binding domain, which consists of two tandem double-stranded RNA binding motifs, and a C-terminal kinase domain. We have used small-angle X-ray scattering and small-angle neutron scattering to define the conformation of latent PKR in solution. Guinier analysis indicates a radius of gyration of about 35 A. The p(r) distance distribution function exhibits a peak near 30 A, with a broad shoulder extending to longer distances. Good fits to the scattering data require models that incorporate multiple compact and extended conformations of the two interdomain linker regions. Thus, PKR belongs to the growing family of proteins that contain intrinsically unstructured regions. We propose that the flexible linkers may allow PKR to productively dimerize upon interaction with RNA activators that have diverse structures.

Collaboration


Dive into the James L. Cole's collaboration.

Top Co-Authors

Avatar

Jeffrey W. Lary

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Jason Wong

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Eric Anderson

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Kenneth Sauer

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vittal K. Yachandra

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andy J. Wowor

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Bushra Husain

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge