Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James L. Daniel is active.

Publication


Featured researches published by James L. Daniel.


Journal of Biological Chemistry | 1998

Molecular Basis for ADP-induced Platelet Activation II. THE P2Y1 RECEPTOR MEDIATES ADP-INDUCED INTRACELLULAR CALCIUM MOBILIZATION AND SHAPE CHANGE IN PLATELETS

Jianguo Jin; James L. Daniel; Satya P. Kunapuli

ADP is an important platelet agonist causing shape change from smooth discoid shape to spiculated spheres and platelet aggregation. However, the molecular mechanisms involved in ADP-induced platelet activation have not been elucidated. We demonstrated earlier the existence of two distinct ADP receptors on platelets, one coupled to phospholipase C, P2TPLC, and the other to inhibition of adenylyl cyclase, P2TAC (Daniel, J. L., Dangelmaier, C., Jin, J., Ashby, B., Smith, J. B., and Kunapuli, S. P. (1998)J. Biol. Chem. 273, 2024–2029), in addition to the previously described P2X1 receptor. Here we report the cloning of a cDNA clone encoding the P2Y1 receptor from a human platelet cDNA library by homology screening with radiolabeled P2Y1-P2Y6 receptor cDNAs. ADP or 2-methyl(thio)-ADP-induced intracellular calcium increases were inhibited by the P2Y1 receptor-specific antagonists, adenosine 3′-phosphate 5′-phosphosulfate (A3P5PS), adenosine 3′-phosphate 5′-phosphate (A3P5P), and adenosine 2′-phosphate 5′-phosphate (A2P5P), in a concentration-dependent manner, but not by ARL 66096 or α,β-MeATP. A3P5PS, A3P5P, and A2P5P also inhibited the shape change of aspirinated platelets induced by 10 μm ADP or 3 μm 2-methyl(thio)-ADP in a concentration-dependent manner, with complete inhibition occurring at 300 μm. On the other hand ARL 66096 (100 nm), a potent P2TAC antagonist and α,β-methylene-ATP (40 μm), a P2X1 receptor agonist, had no effect on ADP-induced platelet shape change. On the contrary, ADP-induced inhibition of adenylyl cyclase was blocked by ARL 66096, but not by α,β-MeATP or the P2Y1 receptor-specific antagonists, A3P5PS, A3P5P, or A2P5P. These results demonstrate the role of the P2Y1 receptor in ADP-induced platelet shape change and calcium mobilization and support the idea that several P2 receptors are involved in the regulation of different aspects of platelet stimulus-response coupling.


Journal of Biological Chemistry | 1998

Molecular basis for ADP-induced platelet activation, I : Evidence for three distinct ADP receptors on human platelets

James L. Daniel; Carol Dangelmaier; Jianguo Jin; Barrie Ashby; J B Smith; Satya P. Kunapuli

Acting through cell surface receptors, ADP activates platelets resulting in shape change, aggregation, thromboxane A2 production, and release of granule contents. ADP also causes a number of intracellular events including inhibition of adenylyl cyclase, mobilization of calcium from intracellular stores, and rapid calcium influx in platelets. However, the receptors that transduce these events remain unidentified and their molecular mechanisms of action have not been elucidated. The receptor responsible for the actions of ADP on platelets has been designated the P2T receptor. In this study we have used ARL 66096, a potent antagonist of ADP-induced platelet aggregation, and a P2X ionotropic receptor agonist, α,β-methylene adenosine 5′-triphosphate, to distinguish the ADP-induced intracellular events. ARL 66096 blocked ADP-induced inhibition of adenylyl cyclase, but did not affect ADP-mediated intracellular calcium increases or shape change. Both ADP and 2-methylthio-ADP caused a 3-fold increase in the level of inositol 1,4,5-trisphosphate over control levels which peaked in a similar fashion to the Ca2+ transient. The increase in inositol 1,3,4-trisphosphate was of similar magnitude to that of inositol 1,4,5-trisphosphate. α,β-Methylene adenosine 5′-triphosphate did not cause an increase in either of the inositol trisphosphates. These results clearly demonstrate the presence of two distinct platelet ADP receptors in addition to the P2X receptor: one coupled to adenylyl cyclase and the other coupled to mobilization of calcium from intracellular stores through inositol trisphosphates.


Journal of Biological Chemistry | 1996

Molecular Cloning of a Novel P2 Purinoceptor from Human Erythroleukemia Cells

G.K.Mohammed Akbar; V. Rao Dasari; Tania E. Webb; Kasirajan Ayyanathan; Kodandaram Pillarisetti; Arbansjit K. Sandhu; Raghbir S. Athwal; James L. Daniel; Barrie Ashby; Eric A. Barnard; Satya P. Kunapuli

Screening of a human erythroleukemia cell cDNA library with radiolabeled chicken P2Y3 cDNA at low stringency revealed a cDNA clone encoding a novel G protein-coupled receptor with homology to P2 purinoceptors. This receptor, designated P2Y7, has 352 amino acids and shares 23-30% amino acid identity with the P2Y1-P2Y6 purinoceptors. The P2Y7 cDNA was transiently expressed in COS-7 cells: binding studies thereon showed a very high affinity for ATP (37 ± 6 nM), much less for UTP and ADP (~1300 nM), and a novel rank order of affinities in the binding series studied of 8 nucleotides and suramin. The P2Y7 receptor sequence appears to denote a different subfamily from that of all the other known P2Y purinoceptors, with only a few of their characteristic sequence motifs shared. The P2Y7 receptor mRNA is abundantly present in the human heart and the skeletal muscle, moderately in the brain and liver, but not in the other tissues tested. The P2Y7 receptor mRNA was also abundantly present in the rat heart and cultured neonatal rat cardiomyocytes. The P2Y7 receptor is functionally coupled to phospholipase C in COS-7 cells transiently expressing this receptor. The P2Y7 gene was shown to be localized to human chromosome 14. We have thus cloned a unique member of the P2Y purinoceptor family which probably plays a role in the regulation of cardiac muscle contraction.


Journal of Biological Chemistry | 1999

Platelet Shape Change Is Mediated by both Calcium-dependent and -independent Signaling Pathways ROLE OF p160 Rho-ASSOCIATED COILED-COIL-CONTAINING PROTEIN KINASE IN PLATELET SHAPE CHANGE

Benjamin Z. S. Paul; James L. Daniel; Satya P. Kunapuli

Platelets undergo shape change upon activation with agonists. During shape change, disc-shaped platelets turn into spiculated spheres with protruding filopodia. When agonist-induced cytosolic Ca2+ increases were prevented using the cytosolic Ca2+ chelator, 5,5′-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (5,5′-dimethyl-BAPTA), platelets still underwent shape change, although the onset was delayed and the initial rate was dramatically decreased. In the absence of cytosolic Ca2+, agonist-stimulated myosin light chain phosphorylation was significantly inhibited. The myosin light chain was maximally phosphorylated at 2 s in control platelets compared with 30 s in 5,5′-dimethyl-BAPTA-treated platelets. ADP, thrombin, or U46619-induced Ca2+-independent platelet shape change was significantly reduced by staurosporine, a nonselective kinase inhibitor, by the selective p160 Rho-associated coiled-coil-containing protein kinase inhibitor Y-27632, or by HA 1077. Both Y-27632 and HA 1077 reduced peak levels of ADP-induced platelet shape change and myosin light chain phosphorylation in control platelets. In 5,5′-dimethyl-BAPTA-treated platelets, Y-27632 and HA 1077 completely abolished both ADP-induced platelet shape change and myosin light chain phosphorylation. Our results indicate that Ca2+/calmodulin-stimulated myosin light chain kinase and p160 Rho-associated coiled-coil-containing protein kinase independently contribute to myosin light chain phosphorylation and platelet shape change, through Ca2+-sensitive and Ca2+-insensitive pathways, respectively.


Journal of Biological Chemistry | 2004

Tec Kinases Mediate Sustained Calcium Influx via Site-specific Tyrosine Phosphorylation of the Phospholipase Cγ Src Homology 2-Src Homology 3 Linker

Lisa A. Humphries; Carol Dangelmaier; Karen Sommer; Kevin Kipp; Roberta M. Kato; Natasha Griffith; Irene Bakman; Christoph W. Turk; James L. Daniel; David J. Rawlings

Tyrosine phosphorylation of phospholipase Cγ2 (PLCγ2) is a crucial activation switch that initiates and maintains intracellular calcium mobilization in response to B cell antigen receptor (BCR) engagement. Although members from three distinct families of non-receptor tyrosine kinases can phosphorylate PLCγ in vitro, the specific kinase(s) controlling BCR-dependent PLCγ activation in vivo remains unknown. Brutons tyrosine kinase (Btk)-deficient human B cells exhibit diminished inositol 1,4,5-trisphosphate production and calcium signaling despite a normal inducible level of total PLCγ2 tyrosine phosphorylation. This suggested that Btk might modify a critical subset of residues essential for PLCγ2 activity. To evaluate this hypothesis, we generated site-specific phosphotyrosine antibodies recognizing four putative regulatory residues within PLCγ2. Whereas all four sites were rapidly modified in response to BCR engagement in normal B cells, Btk-deficient B cells exhibited a marked reduction in phosphorylation of the Src homology 2 (SH2)-SH3 linker region sites, Tyr753 and Tyr759. Phosphorylation of both sites was restored by expression of Tec, but not Syk, family kinases. In contrast, phosphorylation of the PLCγ2 carboxyl-terminal sites, Tyr1197 and Tyr1217, was unaffected by the absence of functional Btk. Together, these data support a model whereby Btk/Tec kinases control sustained calcium signaling via site-specific phosphorylation of key residues within the PLCγ2 SH2-SH3 linker.


Journal of Biological Chemistry | 2009

Role of Phosphoinositide 3-Kinase β in Glycoprotein VI-mediated Akt Activation in Platelets

Soochong Kim; Pierre Mangin; Carol Dangelmaier; Rivka Lillian; Shaun P. Jackson; James L. Daniel; Satya P. Kunapuli

Glycoprotein (GP) VI is a critical platelet collagen receptor. Phosphoinositide 3-kinase (PI3K) plays an important role in GPVI-mediated platelet activation, yet the major PI3K isoforms involved in this process have not been identified. In addition, stimulation of GPVI results in the activation of Akt, a downstream effector of PI3K. Thus, we investigated the contribution of PI3K isoforms to GPVI-mediated platelet activation and Akt activation. A protein kinase C inhibitor GF 109203X or a P2Y12 receptor antagonist AR-C69931MX partly reduced GPVI-induced Akt phosphorylation. Platelets from mice dosed with clopidogrel also showed partial Akt phosphorylation, indicating that GPVI-mediated Akt phosphorylation is regulated by both secretion-dependent and -independent pathways. In addition, GPVI-induced Akt phosphorylation in the presence of ADP antagonists was completely inhibited by PI3K inhibitor LY294002 and PI3Kβ inhibitor TGX-221 indicating an essential role of PI3Kβ in Akt activation directly downstream of GPVI. Moreover, GPVI-mediated platelet aggregation, secretion, and intracellular Ca2+ mobilization were significantly inhibited by TGX-221, and less strongly inhibited by PI3Kα inhibitor PIK75, but were not affected by PI3Kγ inhibitor AS252424 and PI3Kδ inhibitor IC87114. Consistently, GPVI-induced integrin αIIbβ3 activation of PI3Kγ−/− and PI3Kδ−/− platelets also showed no significant difference compared with wild-type platelets. These results demonstrate that GPVI-induced Akt activation in platelets is dependent in part on Gi stimulation through P2Y12 receptor activation by secreted ADP. In addition, a significant portion of GPVI-dependent, ADP-independent Akt activation also exists, and PI3Kβ plays an essential role in GPVI-mediated platelet aggregation and Akt activation.


FEBS Letters | 1986

ADP stimulates IP3 formation in human platelets

James L. Daniel; Carol Dangelmaier; Mary Selak; J. Bryan Smith

Aspirinated human platelets labeled with 32PO4 showed a 1.7‐fold increase in [32P]IP3 when stimulated with ADP. ADP‐stimulated mobilization of internal Ca2+ and phosphorylation of myosin were enhanced in the presence of extracellular Ca2+ but the increase in IP3 was not significantly affected by external Ca2+. The Ca2+ ionophore, ionomycin, elevated internal Ca2+ and induced myosin phosphorylation without a detectable change in IP3. These results indicate that the mechanism of ADP stimulation of human platelets is similar to that of other platelet agonists and supports the theory that IP3 functions to liberate internal Ca2+.


Blood | 2009

Lyn, PKC-δ, SHIP-1 interactions regulate GPVI-mediated platelet-dense granule secretion

Ramya Chari; Soochong Kim; Swaminathan Murugappan; Archana Sanjay; James L. Daniel; Satya P. Kunapuli

Protein kinase C-delta (PKC-delta) is expressed in platelets and activated downstream of protease-activated receptors (PARs) and glycoprotein VI (GPVI) receptors. We have previously shown that PKC-delta positively regulates PAR-mediated dense granule secretion, whereas it negatively regulates GPVI-mediated dense granule secretion. We further investigated the mechanism of such differential regulation of dense granule release by PKC-delta in platelets. SH2 domain-containing inositol phosphatase-1 (SHIP-1) is phosphorylated on Y1020, a marker for its activation, upon stimulation of human platelets with PAR agonists SFLLRN and AYPGKF or GPVI agonist convulxin. GPVI-mediated SHIP-1 phosphorylation occurred rapidly at 15 seconds, whereas PAR-mediated phosphorylation was delayed, occurring at 1 minute. Lyn and SHIP-1, but not SHIP-2 or Shc, preferentially associated with PKC-delta on stimulation of platelets with a GPVI agonist, but not with a PAR agonist. In PKC-delta-null murine platelets, convulxin-induced SHIP-1 phosphorylation was inhibited. Furthermore, in Lyn null murine platelets, GPVI-mediated phosphorylations on Y-1020 of SHIP-1 and Y311 of PKC-delta were inhibited. In murine platelets lacking Lyn or SHIP-1, GPVI-mediated dense granule secretions are potentiated, whereas PAR-mediated dense granule secretions are inhibited. Therefore, we conclude that Lyn-mediated phosphorylations of PKC-delta and SHIP-1 and their associations negatively regulate GPVI-mediated dense granule secretion in platelets.


Blood | 2010

A novel histidine tyrosine phosphatase, TULA-2, associates with Syk and negatively regulates GPVI signaling in platelets

Dafydd H. Thomas; Todd M. Getz; Tiffanny N. Newman; Carol Dangelmaier; Nick Carpino; Satya P. Kunapuli; Alexander Y. Tsygankov; James L. Daniel

T-cell ubiquitin ligand-2 (TULA-2) is a recently discovered histidine tyrosine phosphatase thought to be ubiquitously expressed. In this work, we have investigated whether TULA-2 has a key role in platelet glycoprotein VI (GPVI) signaling. This study indicates that TULA-2 is expressed in human and murine platelets and is able to associate with Syk and dephosphorylate it. Ablation of TULA-2 resulted in hyperphosphorylation of Syk and its downstream effector phospholipase C-γ2 as well as enhanced GPVI-mediated platelet functional responses. In addition, shorter bleeding times and a prothrombotic phenotype were observed in mice lacking TULA-2. We therefore propose that TULA-2 is the primary tyrosine phosphatase mediating the dephosphorylation of Syk and thus functions as a negative regulator of GPVI signaling in platelets.


Journal of Biological Chemistry | 2010

Determination of the substrate specificity of protein-tyrosine phosphatase TULA-2 and identification of Syk as a TULA-2 substrate.

Xianwen Chen; Lige Ren; Soochong Kim; Nicholas Carpino; James L. Daniel; Satya P. Kunapuli; Alexander Y. Tsygankov; Dehua Pei

TULA-1 (UBASH3A/STS-2) and TULA-2 (p70/STS-1) represent a novel class of protein-tyrosine phosphatases. Previous studies suggest that TULA-2 is sequence-selective toward phosphotyrosyl (Tyr(P)) peptides. In this work the substrate specificity of TULA-1 and -2 was systematically evaluated by screening a combinatorial Tyr(P) peptide library. Although TULA-1 showed no detectable activity toward any of the Tyr(P) peptides in the library, TULA-2 recognizes two distinct classes of Tyr(P) substrates. On the N-terminal side of Tyr(P), the class I substrates contain a proline at the Tyr(P)−1 position, a hydrophilic residue at the Tyr(P)−2 position, and aromatic hydrophobic residues at positions Tyr(P)−3 and beyond. The class II substrates typically contain two or more acidic residues, especially at Tyr(P)−1 to Tyr(P)−3 positions, and aromatic hydrophobic residues at other positions. At the C-terminal side of Tyr(P), TULA-2 generally prefers acidic and aromatic residues. The library screening results were confirmed by kinetic analysis of representative peptides selected from the library as well as Tyr(P) peptides derived from various Tyr(P) proteins. TULA-2 is highly active toward peptides corresponding to the Tyr(P)-323 and Tyr(P)-352 sites of Syk, and the Tyr(P)-397 site of focal adhesion kinase and has lower activity toward other Tyr(P) sites in these proteins. In glycoprotein VI-stimulated platelets, knock-out of the TULA-2 gene significantly increased the phosphorylation level of Syk at Tyr-323 and Tyr-352 sites and to a lesser degree at the Tyr-525/526 sites. These results suggest that Syk is a bona fide TULA-2 substrate in platelets.

Collaboration


Dive into the James L. Daniel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Todd M. Getz

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge