Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James L. Hench is active.

Publication


Featured researches published by James L. Hench.


Journal of Physical Oceanography | 2003

Transient Tidal Circulation and Momentum Balances at a Shallow Inlet

James L. Hench; Richard A. Luettich

An analysis of transient momentum balances is carried out to elucidate circulation, dynamics, and exchange mechanisms at shallow barotropic tidal inlets. Circulation is computed using a depth-integrated, fully nonlinear, time-stepping, finite-element model with variably spaced grids having horizontal resolution down to 50 m. Velocity and elevation fields from the model are used to directly evaluate the contribution of each term in the momentum equations to the overall momentum balance. A transformation of the x‐y momentum terms into an s‐n coordinate system is used to simplify the interpretation of the dynamics and provide vivid illustrations of the forces and resulting accelerations in the flow. The analysis is conducted for an idealized inlet and contrasted with a highly detailed model of Beaufort Inlet, North Carolina. Results show that momentum balances in the immediate vicinity of these inlets vary significantly in time and space and oscillate between two dynamical states. Near maximum ebb or flood, the alongstream momentum balances are dominated by advective acceleration, pressure gradient, and bottom friction. Cross-stream balances are dominated by centrifugal acceleration and pressure gradients. Near slack, balances more closely follow linear wave dynamics, with local accelerations balancing pressure gradients, and (to a lesser degree) Coriolis. Comparisons between the idealized inlet and Beaufort Inlet show broad similarities in these momentum balances. However, natural inlet geometry and bottom topography, as well as the tidal transmission characteristics of the sounds behind Beaufort Inlet produce strong asymmetries. Moreover, momentum balances are highly localized, often with subkilometer length scales. The dynamics are used to explain the physical mechanisms for inlet exchange. In particular, the results indicate that the cross-stream dynamics generate a ‘‘wall’’ along the length of an inlet during the stronger phases of the tide. The wall is established by opposing cross-inlet pressure gradients and centrifugal forces, and it poses a significant barrier to cross-inlet exchange during the stronger phases of the tide but is absent near slack.


Journal of Physical Oceanography | 2013

Wave transformation and wave-driven flow across a steep coral reef

Stephen G. Monismith; Liv Herdman; Soeren Ahmerkamp; James L. Hench

Observations of waves, setup, and wave-driven mean flows were made on a steep coral forereef and its associated lagoonal system on the north shore of Moorea, French Polynesia. Despite the steep and complex geometry of the forereef, and wave amplitudes that are nearly equal to the mean water depth, linear wave theory showed very good agreement with data. Measurements across the reef illustrate the importance of including both wave transport (owing toStokes drift), as well as the Eulerianmean transportwhen computing the fluxes over the reef. Finally, the observed setup closely follows the theoretical relationship derived from classic radiation stress theory, although the two parameters that appear in the model—one reflecting wave breaking, the other the effective depth over the reef crest—must be chosen to match theory to data.


Journal of Physical Oceanography | 2009

Lateral Circulation in Well-Mixed and Stratified Estuarine Flows with Curvature

Nicholas J. Nidzieko; James L. Hench; Stephen G. Monismith

Abstract A field experiment was conducted to examine stratified and unstratified curvature-generated lateral circulation and momentum balances in an estuarine tidal channel. Conductivity, temperature, depth, and current profiler data were collected vertically and laterally across the channel at a sharp bend over a fortnightly period to measure the terms of the lateral momentum budget. Well-mixed conditions allow the development of classic two-layer helical flow around a bend. Stratification strengthens curvature-induced lateral circulation, but the development of a lateral baroclinic pressure gradient opposes the resultant motions. The spatial and temporal response of this baroclinic pressure gradient is different than centrifugal acceleration, producing a three-layer profile. As the baroclinic term becomes stronger (or as centrifugal acceleration disappears as the flow exits the bend), two-layer flow with the opposite direction from curvature occurs. In both stratified and well-mixed conditions, downstre...


Remote Sensing | 2012

Towards Deeper Measurements of Tropical Reefscape Structure Using the WorldView-2 Spaceborne Sensor

Antoine Collin; James L. Hench

Owing to the shallowness of waters, vast areas, and spatial complexity, reefscape mapping requires Digital Depth Models (DDM) at a fine scale but over large areas. Outperforming waterborne surveys limited by shallow water depths and costly airborne campaigns, recently launched satellite sensors, endowed with high spectral and very high spatial capabilities, can adequately address the raised issues. Doubling the number of spectral bands, the innovative eight band WorldView-2 (WV2) imagery is very susceptible to enhance the DDM retrieved from the traditional four band QuickBird-2 (QB2). Based on an efficiently recognized algorithm (ratio transform), resolving for the clear water bathymetry, we compared DDM derived from simulated QB2 with WV2 spectral combinations using acoustic ground-truthing in Moorea (French Polynesia). Three outcomes emerged from this study. Increasing spatial resolution from 2 to 0.5 m led to reduced agreement between modeled and in situ water depths. The analytical atmospheric correction (FLAASH) provided poorer results than those derived without atmospheric correction and empirical dark object correction. The purple, green, yellow and NIR3 (WV2 1st-3rd-4th-8th bands) spectral combination, processed with the atmospheric correction at the 2 m resolution, furnished the most robust consistency with ground-truthing (30 m (r = 0.65)), gaining 10 m of penetration relative to other spaceborne-derived bathymetric retrievals. The integration of the WV2-boosted bathymetry estimation into radiative transfer model holds great promise to frequently monitor the reefscape features at the colony-scale level.


Continental Shelf Research | 2002

Lateral dynamic analysis and classification of barotropic tidal inlets

James L. Hench; Brian Blanton; Richard A. Luettich

The dynamical balances at shallow tidal inlets are highly nonlinear, and can vary substantially over sub-kilometer scales. In this study, barotropic dynamics are examined with numerical experiments on a series of idealized inlets with differing inlet widths and lengths. Circulation and elevation fields obtained from fully nonlinear depth-integrated circulation models are used to reconstruct the contribution of each term in the momentum equations. Momentum terms are rotated into a streamline coordinate system to simplify interpretation of the dynamics. Spatial patterns in momentum reveal that the lateral balances at inlets can vary from nearly geostrophic to strongly cyclostrophic. Marked dynamical differences are seen between inlets with different lengths and widths. Inlet regions of geostrophic or cyclostrophic balances can be predicted using two dimensionless parameters, the dynamic length L* and dynamic width W*. A classification scheme is proposed using L* and W* to compare the idealized inlets analyzed here with inlets from 20 previous studies. Four distinct inlet types are identified and discussed.


Journal of Atmospheric and Oceanic Technology | 2006

Comparison of Reynolds Stress Estimates Derived from Standard and Fast-Ping ADCPs

Nicholas J. Nidzieko; Derek A. Fong; James L. Hench

Abstract A field experiment was conducted to directly compare the effects of different sampling modes on Reynolds stress estimates calculated from acoustic Doppler current profilers (ADCPs). Two 1.2-MHz ADCPs were deployed concurrently over a fortnightly cycle: one collected single-ping measurements using mode 1 and a second ADCP employed the fast-ping rate mode 12 with subping-averaged data recorded at the same sample rate as the first ADCP. While mode 12 clearly has a lower noise floor for the estimate of mean velocities, it has been an open question whether the averaging of subpings leads to a biased estimate of turbulence quantities, due to the temporal averaging inherent in this approach. Using the variance method, Reynolds stresses were estimated from the two ADCP datasets and compared with stresses computed directly from the velocity records obtained with a pair of fast sampling acoustic Doppler velocimeters (ADVs) collocated with the ADCPs. Mode-12 stresses were more accurate than mode 1 in compar...


Journal of Atmospheric and Oceanic Technology | 2008

Extracting Reynolds Stresses from Acoustic Doppler Current Profiler Measurements in Wave-Dominated Environments

Johanna H. Rosman; James L. Hench; Jeffrey R. Koseff; Stephen G. Monismith

Abstract Surface waves introduce velocity correlations that bias and often dominate Reynolds stress estimates made using the traditional variance method for acoustic Doppler current profilers (ADCPs). This analysis shows that the wave bias is the sum of a real wave stress and an error due to instrument tilt, both of which have a large uncertainty. Three alternative extensions to the variance method for calculating Reynolds stress profiles from ADCP measurements in wavy conditions are analyzed. The previously proposed variance fitting method (Variance Fit) is evaluated and two more general methods that use along- and between-beam velocity differencing with adaptive filtering (Vertical AF and Horizontal AF) are derived. The three methods are tested on datasets containing long-period monochromatic swell (Moorea, French Polynesia) and shorter-period mixed swell (Santa Barbara, California). The Variance Fit method leaves a residual wave bias in beam velocity variances, especially for intermediate waves, but gi...


Estuaries | 1999

Flood tide circulation near Beaufort Inlet, North Carolina: Implications for larval recruitment

James H. Churchill; James L. Hench; Richard A. Luettich; Jackson O. Blanton; Francisco E. Werner

Drifter tracks and shipboard CTD observations have revealed a number of distinct features of the flood tide circulation carrying water through Beaufort Inlet, North Carolina. One of the most noteworthy of these features is a nearshore jet in the flow carrying water to the inlet on a flood tide. Characterized by a shoreward increase in longshore flow, the jet produces a narrow coastal zone over which water is carried into the inlet. The jet appears to be principally a tidal phenomenon, as it is closely reproduced by a tidally-driven barotropic numerical model. The model results also indicate the jet may be a near-inlet feature. Model simulations of spring tide conditions show the jet confined to within 4 km of the inlet mouth. Another observed phenomenon, which is reproduced by the tidal model, is a distinct splitting of the flow entering the inlet, in which water passing through a particular inlet segment tends to move up-estuary along a well-defined path. An observed flow feature not reproduced by the tidal model is an eastward skew of the region over which water is drawn into the inlet on a flood tide. This asymmetry is unrelated to the local wind. Modeling results from a previous study suggest it may be due to convergent flow at the edge of the low salinity plume issuing from the inlet. Taken together, the results of this and other recent studies in the Beaufort Inlet region reveal the importance of nearshore currents on the eastern side of the inlet in delivering oceanic-spawned larvae to the estuarine system connected to the inlet.


Journal of Geophysical Research | 2015

Heat balances and thermally driven lagoon-ocean exchangeson a tropical coral reef system (Moorea, French Polynesia)

Liv Herdman; James L. Hench; Stephen G. Monismith

The role of surface and advective heat fluxes on buoyancy-driven circulation was examined within a tropical coral reef system. Measurements of local meteorological conditions as well as water temperature and velocity were made at six lagoon locations for 2 months during the austral summer. We found that temperature rather than salinity dominated buoyancy in this system. The data were used to calculate diurnally phase-averaged thermal balances. A one-dimensional momentum balance developed for a portion of the lagoon indicates that the diurnal heating pattern and consistent spatial gradients in surface heat fluxes create a baroclinic pressure gradient that is dynamically important in driving the observed circulation. The baroclinic and barotropic pressure gradients make up 90% of the momentum budget in part of the system; thus, when the baroclinic pressure gradient decreases 20% during the day due to changes in temperature gradient, this substantially changes the circulation, with different flow patterns occurring during night and day. Thermal balances computed across the entire lagoon show that the spatial heating patterns and resulting buoyancy-driven circulation are important in maintaining a persistent advective export of heat from the lagoon and for enhancing ocean-lagoon exchange.


Ecology | 2015

Hydrodynamics influence coral performance through simultaneous direct and indirect effects

Hunter S. Lenihan; James L. Hench; Sally J. Holbrook; Russell J. Schmitt; Matthew Potoski

Hydrodynamic conditions can influence the distribution and abundance of aquatic species in many ways, including directly through disturbance and resource delivery, and indirectly by altering environmental cues and species interactions. In coral reef ecosystems, corallivory is an important top-down control of coral populations, while water motion can enhance coral performance via autotrophic and/or heterotrophic pathways. Using a large-scale field assay in Mo‘orea, French Polynesia, we measured the extent to which the growth of a branching acroporid coral is influenced by hydrodynamics that deliver nutrients and food to corals but also impede corallivory. We explored two hydrodynamic properties that characterized our study system, mean current velocity and current velocity fluctuation (a measure of waves and turbulence). In treatments where predators were excluded, coral skeletal growth was positively related to mean current velocity, whereas no effect of velocity fluctuations was detected. In the presence...

Collaboration


Dive into the James L. Hench's collaboration.

Top Co-Authors

Avatar

Richard A. Luettich

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Libe Washburn

University of California

View shared research outputs
Top Co-Authors

Avatar

Nicholas J. Nidzieko

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liv Herdman

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge