Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James L. Nuzzo is active.

Publication


Featured researches published by James L. Nuzzo.


Journal of Strength and Conditioning Research | 2008

RELATIONSHIP BETWEEN COUNTERMOVEMENT JUMP PERFORMANCE AND MULTIJOINT ISOMETRIC AND DYNAMIC TESTS OF STRENGTH

James L. Nuzzo; Jeffrey M. McBride; Prue Cormie; Grant O. McCaulley

The purpose of this investigation was to determine the relationship between countermovement vertical jump (CMJ) performance and various methods used to assess isometric and dynamic multijoint strength. Twelve NCAA Division I-AA male football and track and field athletes (age, 19.83 ± 1.40 years; height, 179.10 ± 4.56 cm; mass, 90.08 ± 14.81 kg; percentage of body fat, 11.85 ± 5.47%) participated in 2 testing sessions. The first session involved 1 repetition maximum (1RM) (kg) testing in the squat and power clean. During the second session, peak force (N), relative peak force (N·kg−1), peak power (W), relative peak power (W·kg−1), peak velocity (m·s−1), and jump height (meters) in a CMJ, and peak force and rate of force development (RFD) (N·s−1) in a maximal isometric squat (ISO squat) and maximal isometric mid-thigh pull (ISO mid-thigh) were assessed. Significant correlations (P ≤ 0.05) were found when comparing relative 1RMs (1RM/body mass), in both the squat and power clean, to relative CMJ peak power, CMJ peak velocity, and CMJ height. No significant correlations existed between the 4 measures of absolute strength, which did not account for body mass (squat 1RM, power clean 1RM, ISO squat peak force, and ISO mid-thigh peak force) when compared to CMJ peak velocity and CMJ height. In conclusion, multijoint dynamic tests of strength (squat 1RM and power clean 1RM), expressed relative to body mass, are most closely correlated with CMJ performance. These results suggest that increasing maximal strength relative to body mass can improve performance in explosive lower body movements. The squat and power clean, used in a concurrent strength and power training program, are recommended for optimizing lower body power.


Journal of Strength and Conditioning Research | 2011

The reliability of three devices used for measuring vertical jump height.

James L. Nuzzo; Jonathan H Anning; Jessica M. Scharfenberg

Nuzzo, JL, Anning, JH, and Scharfenberg, JM. The reliability of three devices used for measuring vertical jump height. J Strength Cond Res 25(9): 2580-2590, 2011—The purpose of this investigation was to assess the intrasession and intersession reliability of the Vertec, Just Jump System, and Myotest for measuring countermovement vertical jump (CMJ) height. Forty male and 39 female university students completed 3 maximal-effort CMJs during 2 testing sessions, which were separated by 24-48 hours. The height of the CMJ was measured from all 3 devices simultaneously. Systematic error, relative reliability, absolute reliability, and heteroscedasticity were assessed for each device. Systematic error across the 3 CMJ trials was observed within both sessions for males and females, and this was most frequently observed when the CMJ height was measured by the Vertec. No systematic error was discovered across the 2 testing sessions when the maximum CMJ heights from the 2 sessions were compared. In males, the Myotest demonstrated the best intrasession reliability (intraclass correlation coefficient [ICC] = 0.95; SEM = 1.5 cm; coefficient of variation [CV] = 3.3%) and intersession reliability (ICC = 0.88; SEM = 2.4 cm; CV = 5.3%; limits of agreement = −0.08 ± 4.06 cm). Similarly, in females, the Myotest demonstrated the best intrasession reliability (ICC = 0.91; SEM = 1.4 cm; CV = 4.5%) and intersession reliability (ICC = 0.92; SEM = 1.3 cm; CV = 4.1%; limits of agreement = 0.33 ± 3.53 cm). Additional analysis revealed that heteroscedasticity was present in the CMJ when measured from all 3 devices, indicating that better jumpers demonstrate greater fluctuations in CMJ scores across testing sessions. To attain reliable CMJ height measurements, practitioners are encouraged to familiarize athletes with the CMJ technique and then allow the athletes to complete numerous repetitions until performance plateaus, particularly if the Vertec is being used.


Journal of Strength and Conditioning Research | 2010

Effect of an Acute Bout of Whole Body Vibration Exercise on Muscle Force Output and Motor Neuron Excitability

Jeffrey M. McBride; James L. Nuzzo; Andrea M Dayne; Michael A Israetel; David C. Nieman; N. Travis Triplett

McBride, JM, Nuzzo, JL, Dayne, AM, Israetel, MA, Nieman, DC, and Triplett, NT. Effect of an acute bout of whole body vibration exercise on muscle force output and motor neuron excitability. J Strength Cond Res 24(1): 184-189, 2010-The purpose of the current investigation was to assess the effect of an acute bout of whole body vibration (WBV) exercise on muscle force output and motor neuron excitability. Nineteen recreationally trained college-aged males were randomly assigned to a WBV (n = 10) or a sham (S, n = 9) group. The WBV group completed a series of static, body weight squats on a vibrating platform at 30 Hz and an amplitude of ~3.5 mm (vertical), whereas the S group performed the same series of exercises but without vibration. Measurements were performed before (Pre) and then immediately post-exercise (Imm Post), 8 minutes post-exercise (8-Min Post), or 16 minutes post-exercise (16-Min Post) during 3 different testing sessions. The measurements involved a ballistic isometric maximum voluntary contraction (MVC) of the triceps surae muscle complex and electrical stimulation of the tibial nerve for assessment of motor neuron excitability by analyzing H-reflex and M-wave responses (Hmax/Mmax ratio). Electromyography was also obtained from the triceps surae muscle complex during the MVCs. The WBV group significantly (p ≤ 0.05) increased peak force at Imm Post (9.4%) and 8-Min Post (10.4%). No significant change in peak force was observed in the S group. No significant changes were observed in either group for average integrated EMG, Hmax/Mmax ratio, or rate of force development at Imm Post, 8-Min Post, or 16-Min Post. The results from this investigation indicate that an acute bout of static, body weight squat exercises, combined with WBV, increases muscle force output up to 8 minutes post-exercise. However, this increase in muscle force is not accompanied by a significant increase in motor neuron excitability or muscle activation. Thus, it is plausible to use WBV as a method for acute increase in muscle force output for athletes immediately before competition.


Journal of Strength and Conditioning Research | 2008

TRUNK MUSCLE ACTIVITY DURING STABILITY BALL AND FREE WEIGHT EXERCISES

James L. Nuzzo; Grant O. McCaulley; Prue Cormie; Michael J. Cavill; Jeffrey M. McBride

The purpose of this investigation was to compare trunk muscle activity during stability ball and free weight exercises. Nine resistance-trained men participated in one testing session in which squats (SQ) and deadlifts (DL) were completed with loads of approximately 50, 70, 90, and 100% of one-repetition maximum (1RM). Isometric contractions during 3 stability ball exercises (quadruped (QP), pelvic thrust (PT), ball back extension (BE)) were also completed. During all exercises, average integrated electromyography (IEMG) from the rectus abdominus (RA), external oblique (EO), longissimus (L1) and multifidus (L5) was collected and analyzed. Results demonstrate that when expressed relative to 100% DL 1RM, muscle activity was 19.5 ± 14.8% for L1 and 30.2 ± 19.3% for L5 during QP, 31.4 ± 13.4% for L1 and 37.6 ± 12.4% for L5 during PT, and 44.2 ± 22.8% for L1 and 45.5 ± 21.6% for L5 during BE. IEMG of L1 during SQ and DL at 90 and 100% 1RM, and relative muscle activity of L5 during SQ and DL at 100% 1RM was significantly greater (P ≤ 0.05) than in the stability ball exercises. Furthermore, relative muscle activity of L1 during DL at 50 and 70% 1RM was significantly greater than in QP and PT. No significant differences were observed in RA and EO during any of the exercises. In conclusion, activity of the trunk muscles during SQs and DLs is greater or equal to that which is produced during the stability ball exercises. It appears that stability ball exercises may not provide a sufficient stimulus for increasing muscular strength or hypertrophy; consequently, the role of stability ball exercises in strength and conditioning programs is questioned. SQs and DLs are recommended for increasing strength and hypertrophy of the back extensors.


Journal of Strength and Conditioning Research | 2009

Comparison of Methods to Quantify Volume During Resistance Exercise

Jeffrey M. McBride; Grant O. McCaulley; Prue Cormie; James L. Nuzzo; Michael J. Cavill; N. Travis Triplett

McBride, JM, McCaulley, GO, Cormie, P, Nuzzo, JL, Cavill, MJ, and Triplett, NT. Comparison of methods to quantify volume during resistance exercise. J Strength Cond Res 23(1): 106-110, 2009-The purpose of this investigation was to compare 4 different methods of calculating volume when comparing resistance exercise protocols of varying intensities. Ten Appalachian State University students experienced in resistance exercise completed 3 different resistance exercise protocols on different days using a randomized, crossover design, with 1 week of rest between each protocol. The protocols included 1) hypertrophy: 4 sets of 10 repetitions in the squat at 75% of a 1-repetition maximum (1RM) (90-second rest periods); 2) strength: 11 sets of 3 repetitions at 90% 1RM (5-minute rest periods); and 3) power: 8 sets of 6 repetitions of jump squats at 0% 1RM (3-minute rest periods). The volume of resistance exercise completed during each protocol was determined with 4 different methods: 1) volume load (VL) (repetitions [no.] × external load [kg]); 2) maximum dynamic strength volume load (MDSVL) (repetitions [no.] × [body mass − shank mass (kg) + external load (kg)]); 3) time under tension (TUT) (eccentric time +milliseconds] + concentric time +milliseconds]); and 4) total work (TW) (force [N] × displacement [m]). The volumes differed significantly (p < 0.05) between hypertrophy and strength in comparison with the power protocol when VL and MDSVL were used to determine the volume of resistance exercise completed. Furthermore, significant differences in TUT existed between all 3 resistance exercise protocols. The TW calculated was not significantly different between the 3 protocols. These data imply that each method examined results in substantially different values when comparing various resistance exercise protocols involving different levels of intensity.


Journal of Strength and Conditioning Research | 2010

Testing of the maximal dynamic output hypothesis in trained and untrained subjects.

James L. Nuzzo; Jeffrey M. McBride; Andrea M Dayne; Michael A Israetel; Charles L. Dumke; N. Travis Triplett

Nuzzo, JL, McBride, JM, Dayne, AM, Israetel, MA, Dumke, CL, and Triplett, NT. Testing of the maximal dynamic output hypothesis in trained and untrained subjects. J Strength Cond Res 24(5): 1269-1276, 2010-The maximal dynamic output (MDO) hypothesis is a newly proposed concept, which suggests that the muscular system of the lower limbs is designed to produce maximal power output when performing countermovement vertical jumping (CMJ) at body mass as opposed to other loading conditions. However, it is unclear if the MDO concept can be applied to individuals with different levels of maximal strength. The purpose of this investigation was to determine if subjects, who have distinct differences in maximal strength, maximize CMJ power at body mass. Fourteen male strength-power trained subjects (squat 1 repetition maximum (1RM)-to-body mass ratio = 1.96 ± 0.24) and 6 untrained male subjects (squat 1RM-to-body mass ratio = 0.94 ± 0.18) completed CMJs with loads that were less than, equal to, and greater than body mass. Loads less than body mass were accomplished with a custom-designed unloading apparatus, and loads greater than body mass were accomplished with a barbell and weights. In both groups, mean values for CMJ peak and mean power were greatest during the body mass jump. Power outputs at body mass were significantly different (p ≤ 0.05) than power outputs at various conditions of loading and unloading. These data support the MDO hypothesis and its application to individuals with significantly different 1RM-to-body mass ratios. Additionally, these data further support the idea that body mass CMJs are a theoretically sound way to train for power because of the maximal power outputs that are produced during this condition.


Journal of Strength and Conditioning Research | 2010

Kinetic and Kinematic Differences Between Squats Performed With and Without Elastic Bands

Michael A Israetel; Jeffrey M. McBride; James L. Nuzzo; Jared W. Skinner; Andrea M Dayne

Israetel, MA, McBridem, JM, Nuzzo, JL, Skinner, JW, and Dayne, AM. Kinetic and kinematic differences between squats performed with and without elastic bands. J Strength Cond Res 24(1): 190-194, 2010-The purpose of this investigation was to compare kinetic and kinematic variables between squats performed with and without elastic bands equalized for total work. Ten recreationally weight trained males completed 1 set of 5 squats without (Wht) and with (Band) elastic bands as resistance. Squats were completed while standing on a force platform with bar displacement measured using 2 potentiometers. Electromyography (EMG) was obtained from the vastus lateralis. Average force-time, velocity-time, power-time, and EMG-time graphs were generated and statistically analyzed for mean differences in values between the 2 conditions during the eccentric and concentric phases. The Band condition resulted in significantly higher forces in comparison to the Wht condition during the first 25% of the eccentric phase and the last 10% of the concentric phase (p ≤ 0.05). However, the Wht condition resulted in significantly higher forces during the last 5% of the eccentric phase and the first 5% of the concentric phase in comparison to the Band condition. The Band condition resulted in significantly higher power and velocity values during the first portion of the eccentric phase and the latter portion of the concentric phase. Vastus lateralis muscle activity during the Band condition was significantly greater during the first portion of the eccentric phase and latter portion of the concentric phase as well. This investigation indicates that squats equalized for total work with and without elastic bands significantly alter the force-time, power-time, velocity-time, and EMG-time curves associated with the movements. Specifically, elastic bands seem to increase force, power, and muscle activity during the early portions of the eccentric phase and latter portions of the concentric phase.


Journal of Strength and Conditioning Research | 2013

Systematic Review of Core Muscle Activity During Physical Fitness Exercises

Jason M. Martuscello; James L. Nuzzo; Candi D. Ashley; Bill Campbell; John J. Orriola; John M. Mayer

Abstract Martuscello, JM, Nuzzo, JL, Ashley, CD, Campbell, BI, Orriola, JJ, and Mayer, JM. Systematic review of core muscle activity during physical fitness exercises. J Strength Cond Res 27(6): 1684–1698, 2013—A consensus has not been reached among strength and conditioning specialists regarding what physical fitness exercises are most effective to stimulate activity of the core muscles. Thus, the purpose of this article was to systematically review the literature on the electromyographic (EMG) activity of 3 core muscles (lumbar multifidus, transverse abdominis, quadratus lumborum) during physical fitness exercises in healthy adults. CINAHL, Cochrane Central Register of Controlled Trials, EMBASE, PubMed, SPORTdiscus, and Web of Science databases were searched for relevant articles using a search strategy designed by the investigators. Seventeen studies enrolling 252 participants met the reviews inclusion/exclusion criteria. Physical fitness exercises were partitioned into 5 major types: traditional core, core stability, ball/device, free weight, and noncore free weight. Strength of evidence was assessed and summarized for comparisons among exercise types. The major findings of this review with moderate levels of evidence indicate that lumbar multifidus EMG activity is greater during free weight exercises compared with ball/device exercises and is similar during core stability and ball/device exercises. Transverse abdominis EMG activity is similar during core stability and ball/device exercises. No studies were uncovered for quadratus lumborum EMG activity during physical fitness exercises. The available evidence suggests that strength and conditioning specialists should focus on implementing multijoint free weight exercises, rather than core-specific exercises, to adequately train the core muscles in their athletes and clients.


Journal of Strength and Conditioning Research | 2011

Power Output in the Jump Squat in Adolescent Male Athletes

Andrea M Dayne; Jeffrey M. McBride; James L. Nuzzo; N. Travis Triplett; Jared W. Skinner; Alan Burr

Dayne, AM, McBride, JM, Nuzzo, JL, Triplett, NT, Skinner, J, and Burr, A. Power output in the jump squat in Adolescent male athletes J Strength Cond Res 25(3): 585-589, 2011-The load that maximizes power output in the jump squat (JS) in college-aged athletic males has been reported to be 0% of 1 repetition maximum [1RM] squat strength) or in other words body mass. No data exist concerning adolescent athletic males. In addition, strength levels have been theorized to possibly affect the load that maximizes power output in the JS. The purpose of this investigation was to identify the load that maximizes power output in the JS in adolescent athletic men, and concurrently describe their strength level and its effect on the load that maximizes power output. Eleven high-school male athletes were tested on 2 occasions, first determining their 1RM in the squat (1RM = 141.14 ± 28.08 kg; squat 1RM-to-body mass ratio = 1.76 ± 0.15) and then performing JS testing at loads equal to 0% (body mass), 20, 40, 60, and 80% of squat 1RM. Peak power (PP), peak force, peak velocity (PV), and peak displacement were measured at each load. Jump squat at the 0% load produced significantly (p ≤ 0.05) higher PP, PV, and peak displacement in comparison with the 40, 60, and 80% loading conditions. It was concluded that the load that maximizes power output in the JS is 0% of 1RM in adolescent athletic men, the same as found in college-aged athletic men. In addition, strength level relative to body mass did not affect the load that maximized power output. Practically, when devising a training program to increase PP, it is important to include JSs at body mass along with traditional strength training at heavier loads to increase power output across the entire loading spectrum.


Journal of Obesity | 2012

The Impact of Obesity on Back and Core Muscular Endurance in Firefighters

John M. Mayer; James L. Nuzzo; Ren Chen; William S. Quillen; Joe L. Verna; Rebecca M. Miro; Simon Dagenais

The purpose of this study was to assess the relationships between obesity and measures of back and core muscular endurance in firefighters. Methods. A cross-sectional study was conducted in career firefighters without low back pain. Obesity measures included body mass index (BMI) and body fat percentage assessed with air displacement plethysmography. Muscular endurance was assessed with the Modified Biering Sorensen (back) and Plank (core) tests. Relationships were explored using t-tests and regression analyses. Results. Of the 83 participants enrolled, 24 (29%) were obese (BMI ≥ 30). Back and core muscular endurance was 27% lower for obese participants. Significant negative correlations were observed for BMI and body fat percentage with back and core endurance (r = −0.42 to −0.52). Stepwise regression models including one obesity measure (BMI, body fat percentage, and fat mass/fat-free mass), along with age and self-reported physical exercise, accounted for 17–19% of the variance in back muscular endurance and 29–37% of the variance in core muscular endurance. Conclusions. Obesity is associated with reduced back and core muscular endurance in firefighters, which may increase the risk of musculoskeletal injuries. Obesity should be considered along with back and core muscular endurance when designing exercise programs for back pain prevention in firefighters.

Collaboration


Dive into the James L. Nuzzo's collaboration.

Top Co-Authors

Avatar

Jeffrey M. McBride

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

John M. Mayer

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

N. Travis Triplett

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

Prue Cormie

Australian Catholic University

View shared research outputs
Top Co-Authors

Avatar

Grant O. McCaulley

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

Michael J. Cavill

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

Jared W. Skinner

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bill Campbell

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge