Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James M. Angelastro is active.

Publication


Featured researches published by James M. Angelastro.


The Journal of Neuroscience | 2002

Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cellular Models of Parkinson's Disease

Elizabeth J. Ryu; Heather P. Harding; James M. Angelastro; Ottavio V. Vitolo; David Ron; Lloyd A. Greene

6-Hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinsons disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1α and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP+ and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinsons disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease.


The Journal of Neuroscience | 2005

Downregulation of Activating Transcription Factor 5 Is Required for Differentiation of Neural Progenitor Cells into Astrocytes

James M. Angelastro; Jeffrey L. Mason; Tatyana N. Ignatova; Valery G. Kukekov; George B. Stengren; James E. Goldman; Lloyd A. Greene

The mechanisms that regulate neural progenitor cell differentiation are primarily unknown. The transcription factor activating transcription factor 5 (ATF5) is expressed in neural progenitors of developing brain but is absent from mature astrocytes and neurons. Here, we demonstrate that ATF5 regulates the conversion of ventricular zone (VZ) and subventricular zone (SVZ) neural progenitors into astrocytes. Constitutive ATF5 expression maintains neural progenitor cell proliferation and blocks their in vitro and in vivo differentiation into astrocytes. Conversely, loss of ATF5 function promotes cell-cycle exit and allows astrocytic differentiation in vitro and in vivo. CNTF, a promoter of astrocytic differentiation, downregulates endogenous ATF5, whereas constitutively expressed ATF5 suppresses CNTF-promoted astrocyte genesis. Unexpectedly, constitutive ATF5 expression in neonatal SVZ cells both in vitro and in vivo causes them to acquire properties and anatomic distributions of VZ cells. These findings identify ATF5 as a key regulator of astrocyte formation and potentially of the VZ to SVZ transition.


PLOS ONE | 2012

Mitochondrial Dysfunction in Pten Haplo-Insufficient Mice with Social Deficits and Repetitive Behavior: Interplay between Pten and p53

Eleonora Napoli; Catherine Ross-Inta; Sarah Wong; Connie Hung; Yasuko Fujisawa; Danielle Sakaguchi; James M. Angelastro; Alicja Omanska-Klusek; Robert Schoenfeld; Cecilia Giulivi

Etiology of aberrant social behavior consistently points to a strong polygenetic component involved in fundamental developmental pathways, with the potential of being enhanced by defects in bioenergetics. To this end, the occurrence of social deficits and mitochondrial outcomes were evaluated in conditional Pten (Phosphatase and tensin homolog) haplo-insufficient mice, in which only one allele was selectively knocked-out in neural tissues. Pten mutations have been linked to Alzheimers disease and syndromic autism spectrum disorders, among others. By 4–6 weeks of age, Pten insufficiency resulted in the increase of several mitochondrial Complex activities (II–III, IV and V) not accompanied by increases in mitochondrial mass, consistent with an activation of the PI3K/Akt pathway, of which Pten is a negative modulator. At 8–13 weeks of age, Pten haplo-insufficient mice did not show significant behavioral abnormalities or changes in mitochondrial outcomes, but by 20–29 weeks, they displayed aberrant social behavior (social avoidance, failure to recognize familiar mouse, and repetitive self-grooming), macrocephaly, increased oxidative stress, decreased cytochrome c oxidase (CCO) activity (50%) and increased mtDNA deletions in cerebellum and hippocampus. Mitochondrial dysfunction was the result of a downregulation of p53-signaling pathway evaluated by lower protein expression of p21 (65% of controls) and the CCO chaperone SCO2 (47% of controls), two p53-downstream targets. This mechanism was confirmed in Pten-deficient striatal neurons and, HCT 116 cells with different p53 gene dosage. These results suggest a unique pathogenic mechanism of the Pten-p53 axis in mice with aberrant social behavior: loss of Pten (via p53) impairs mitochondrial function elicited by an early defective assembly of CCO and later enhanced by the accumulation of mtDNA deletions. Consistent with our results, (i) SCO2 deficiency and/or CCO activity defects have been reported in patients with learning disabilities including autism and (ii) mutated proteins in ASD have been found associated with p53-signaling pathways.


International Journal of Cancer | 2007

The transcription factor ATF5 is widely expressed in carcinomas, and interference with its function selectively kills neoplastic, but not nontransformed, breast cell lines

Sara E. Monaco; James M. Angelastro; Matthias Szabolcs; Lloyd A. Greene

ATF5, a transcription factor important in differentiation, proliferation and survival, has been found to be highly expressed in neural progenitor cells and in certain tumors including glioblastomas (GBMs), but its expression in other normal and neoplastic tissues has not been extensively investigated. A tissue microarray immunostained for ATF5 showed diffuse nuclear expression (as defined by the presence in greater than 25% of cells) in 63% (117/186) of neoplastic samples, when compared to only 32% (20/62) in nonneoplastic tissues. When analyzed by histologic subtype, a significantly greater proportion of adenocarcinomas, transitional cell carcinomas, squamous cell carcinomas and metastatic carcinomas of various tissue origins had nuclear staining when compared to nonneoplastic tissues. There was no significant difference in ATF5 expression in renal cell carcinomas, lymphomas and seminomas, when compared to nonneoplastic tissues. An expanded series of nonarray breast resection specimens revealed a significantly greater proportion of ATF5 positivity in ductal and lobular carcinomas, when compared to normal breast tissue. Past work found that loss of ATF5 function triggers death of GBM cells, but not of normal activated astrocytes. Here, we observed that loss of ATF5 function caused significant apoptotic death of neoplastic breast cell lines, but not of nonneoplastic breast cell lines. Our data demonstrate elevated ATF5 expression in a wide variety of neoplasms and that interference with ATF5 function selectively triggers death of breast carcinoma cells. Such findings may have potential therapeutic application.


Molecular Cancer Research | 2010

Overexpression of CD133 Promotes Drug Resistance in C6 Glioma Cells

James M. Angelastro; Michael W. Lamé

Glioblastoma multiforme is an extremely aggressive and clinically unresponsive form of cancer. Transformed neoplastic neural stem cells, resistant to chemotherapy and radiation therapy, are thought to be responsible for the initial tumor formation and the recurrence of disease following surgical resection. These stem cells express multidrug resistance markers along with CD133. We show that ectopic overexpression of CD133 in rat C6 glioma cells leads to significant reluctance to undergo apoptosis from camptothecin and doxorubicin. Although p53 was upregulated in CD133-overexpressing glioma cells treated with DNA-damaging agents, apoptosis seems to be p53 independent. At least one ABC transporter, rat P-glycoprotein/ABCB1, was upregulated by 62% in CD133+ cells with a corresponding increase in activity. Thus, the combination of higher P-glycoprotein mRNA transcription and elevated transporter activity seems to contribute to the protection from cytotoxic reagents. In conclusion, previous investigators have reported that resilient cancer stem cells coexpress CD133 and ABC transporters with increased reluctance toward apoptosis. Our data suggest that CD133 may contribute to the observed resistance to apoptosis of CD133+ cancer stem cells. Mol Cancer Res; 8(8); 1105–15. ©2010 AACR.


Molecular and Cellular Neuroscience | 2005

ATF5 regulates the proliferation and differentiation of oligodendrocytes

Jeffrey L. Mason; James M. Angelastro; Tatyana N. Ignatova; Valery G. Kukekov; Grace Lin; Lloyd A. Greene; James E. Goldman

The transcription factor ATF5 is expressed in cells of the embryonic and neonatal ventricular zone/subventricular zone (VZ/SVZ), and must be down-regulated for their differentiation into neurons and astrocytes. Here, we show that ATF5 plays a major role in directing oligodendrocyte development. ATF5 is expressed by oligodendrocyte precursors but is absent from mature oligodendroglia. Constitutively expressed ATF5 maintains SVZ cells and O4(+) oligodendrocyte precursors in cycle and inhibits their differentiation into oligodendrocytes in vitro and in vivo. In contrast, ATF5 loss-of-function (LOF; produced by a dominant-negative form of the protein) accelerates oligodendrocyte differentiation of O4(+) cells in vitro and of SVZ cells in vivo. Significantly, the accelerated oligodendrocyte differentiation promoted by ATF5 LOF in vivo results in aberrant migration. Thus, appropriately regulated expression of ATF5 is required for proper expansion of oligodendroglial progenitors as well as for their timely differentiation. Regulation of oligodendrocyte, astrocyte, and neuronal differentiation indicates that ATF5 operates as a general regulator of the timing of differentiation, independent of cell lineage.


Journal of Neurochemistry | 2009

The transcription factor ATF5 : role in neurodevelopment and neural tumors

Lloyd A. Greene; Hae Young Lee; James M. Angelastro

We review recent findings regarding the properties of ATF5 and the major roles that this transcription factor plays in development of the nervous system and in survival of neural tumors. ATF5 is a widely expressed basic leucine zipper protein that has been subject to limited characterization. It is highly expressed in zones of neuroprogenitor cell proliferation. In vitro and in vivo studies indicate that it functions there to promote neuroprogenitor cell expansion and to suppress their differentiation into neurons or glia. ATF5 expression is down‐regulated by trophic factors and this is required for their capacity to promote neuroprogenitor cell cycle exit and differentiation into either neurons, oligodendroglia or astrocytes. ATF5 is also highly expressed in a number of tumor types, including neural tumors such as neuroblastomas, medulloblastomas and glioblastomas. Examination of the role of ATF5 in glioblastoma cells indicates that interference with its expression or activity causes them to undergo apoptotic death. In contrast, normal astrocytes and neurons do not appear to require ATF5 for survival, indicating that it may be a selective target for treatment of glioblastomas and other neural neoplasias. Further studies are needed to identify the transcriptional targets of ATF5 and the mechanisms by which its expression is regulated in neuroprogenitors and tumors.


Journal of Biological Chemistry | 2001

Characterization of a novel isoform of caspase-9 that inhibits apoptosis.

James M. Angelastro; Nah Yong Moon; David X. Liu; An-Suei Yang; Lloyd A. Greene; Thomas F. Franke

We have identified a novel isoform of rat caspase-9 in which the C terminus of full-length caspase-9 is replaced with an alternative peptide sequence. Casp-9-CTD (where CTD is carboxyl-terminal divergent) is expressed in multiple tissues, with the relative highest expression observed in ovary and heart. Casp-9-CTD was found primarily in the cytoplasm and was not detected in the nucleus. Structural predictions suggest that in contrast to full-length caspase-9, casp-9-CTD will not be processed. Our model is supported by reduced protease activity of casp-9-CTD preparations in vitro and by the lack of detectable processing of casp-9-CTD proenzyme or the induction of cell death following transfection into cells. Both neuronal and non-neuronal cell types transfected with casp-9-CTD were resistant to death evoked by trophic factor deprivation or DNA damage. In addition, cytosolic lysates prepared from cells permanently expressing exogenous casp-9-CTD were resistant to caspase induction by cytochrome c in reconstitution assays. Taken together, our observations indicate that casp-9-CTD acts as a dominant-negative variant. Its expression in various tissues indicates a physiological role in regulating cell death.


Molecular Cancer Research | 2009

Identification of a Novel DNA Binding Site and a Transcriptional Target for Activating Transcription Factor 5 in C6 Glioma and MCF-7 Breast Cancer Cells

Guangfu Li; Wenhong Li; James M. Angelastro; Lloyd A. Greene; David X. Liu

Recent reports indicate that the activating transcription factor 5 (ATF5) is required for the survival of cancer cells but not for noncancer cells. However, the mechanisms by which ATF5 regulates genes and promotes cell survival are not clear. Using a cyclic amplification and selection of targets (CASTing) approach, we identified a novel ATF5 consensus DNA binding sequence. We show in C6 glioma and MCF-7 breast cancer cells that ATF5 occupies this sequence and that ATF5 activates reporter gene expression driven by this site. Conversely, reporter activity is diminished when ATF5 activity is blocked or when ATF5 expression is down-regulated by serum withdrawal. We further show that early growth response factor 1 (Egr-1), whose promoter contains two adjacent ATF5 consensus binding sites at a conserved promoter position in rat, mouse, and human, is targeted and regulated by ATF5 in C6 and MCF-7 cells. These data provide new insight on the mechanisms by which ATF5 promotes gene regulation and cancer-specific cell survival. (Mol Cancer Res 2009;7(6):933–43)


BMC Neuroscience | 2002

Nerve growth factor selectively regulates expression of transcripts encoding ribosomal proteins

James M. Angelastro; Béata Töröcsik; Lloyd A. Greene

BackgroundNGF exerts a variety of actions including promotion of neuronal differentiation and survival. The PC12 rat pheochromocytoma cell line has proved valuable for studying how NGF works and has revealed that the NGF mechanism includes regulation of gene expression. Accordingly, we used SAGE (Serial Analysis of Gene Expression) to compare levels of specific transcripts in PC12 cells before and after long-term NGF exposure. Of the approximately 22,000 transcripts detected and quantified, 4% are NGF-regulated by 6-fold or more. Here, we used database information to identify transcripts in our SAGE libraries that encode ribosomal proteins and have compared the effect of NGF on their relative levels of expression.ResultsAmong the transcripts detected in our SAGE analysis, 74 were identified as encoding ribosomal proteins. Ribosomal protein transcripts were among the most abundantly expressed and, for naive and NGF-treated PC12 cells, represented 5.2% and 3.5%, respectively, of total transcripts analyzed. Surprisingly, nearly half of ribosomal protein transcripts underwent statistically significant NGF-promoted alterations in relative abundance, with changes of up to 5-fold. Of the changes, approximately 2/3 represented decreases. A time course revealed that the relative abundance of transcripts encoding RPL9 increases within 1 hr of NGF treatment and is maximally elevated by 8 hr.ConclusionsThese data establish that NGF selectively changes expression of ribosomal protein transcripts. These findings raise potential roles for regulation of ribosomal protein transcripts in NGF-promoted withdrawal from the cell cycle and neuronal differentiation and indicate that regulation of individual ribosomal protein transcripts is cell- and stimulus-specific.

Collaboration


Dive into the James M. Angelastro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus D. Siegelin

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang Shu

Columbia University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge