Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James M. D. Day is active.

Publication


Featured researches published by James M. D. Day.


Science | 2010

Stochastic Late Accretion to Earth, the Moon, and Mars

William F. Bottke; Richard J. Walker; James M. D. Day; David Nesvorny; Linda T. Elkins-Tanton

For the Love of Iron Iron-loving elements such as Re, Os, Ir, Pt, Rh, Pd, and Au must have been delivered to the upper mantle of Earth, Mars, and the Moon after formation of the planetary cores, because, before that, these elements tended to bond with the cores metallic iron, stripping them from the planetary upper layers. Using Monte Carlo models, Bottke et al. (p. 1527) show that the relative abundances of iron-loving elements on Earth, Mars, and the Moon can be explained if most of the impacting planetesimals that delivered the elements had sizes extending up to several thousand kilometers. In these circumstances, most of the iron-loving elements would arrive in a small number of random impacts, the most massive of which hit Earth but not the Moon. Some of these impacts may also have altered Earths obliquity, produced the Moons orbital inclination, and delivered water to the Moons mantle. Random impacts led to the late delivery of highly siderophile elements (noble metals) during the growth of these bodies. Core formation should have stripped the terrestrial, lunar, and martian mantles of highly siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances. Late accretion may offer a solution, provided that ≥0.5% Earth masses of broadly chondritic planetesimals reach Earth’s mantle and that ~10 and ~1200 times less mass goes to Mars and the Moon, respectively. We show that leftover planetesimal populations dominated by massive projectiles can explain these additions, with our inferred size distribution matching those derived from the inner asteroid belt, ancient martian impact basins, and planetary accretion models. The largest late terrestrial impactors, at 2500 to 3000 kilometers in diameter, potentially modified Earth’s obliquity by ~10°, whereas those for the Moon, at ~250 to 300 kilometers, may have delivered water to its mantle.


Nature | 2012

Zinc isotopic evidence for the origin of the Moon

Randal C. Paniello; James M. D. Day; Frederic Moynier

Volatile elements have a fundamental role in the evolution of planets. But how budgets of volatiles were set in planets, and the nature and extent of volatile-depletion of planetary bodies during the earliest stages of Solar System formation remain poorly understood. The Moon is considered to be volatile-depleted and so it has been predicted that volatile loss should have fractionated stable isotopes of moderately volatile elements. One such element, zinc, exhibits strong isotopic fractionation during volatilization in planetary rocks, but is hardly fractionated during terrestrial igneous processes, making it a powerful tracer of the volatile histories of planets. Here we present high-precision zinc isotopic and abundance data which show that lunar magmatic rocks are enriched in the heavy isotopes of zinc and have lower zinc concentrations than terrestrial or Martian igneous rocks. Conversely, Earth and Mars have broadly chondritic zinc isotopic compositions. We show that these variations represent large-scale evaporation of zinc, most probably in the aftermath of the Moon-forming event, rather than small-scale evaporation processes during volcanism. Our results therefore represent evidence for volatile depletion of the Moon through evaporation, and are consistent with a giant impact origin for the Earth and Moon.


Nature | 2013

Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust

Rita A. Cabral; Matthew G. Jackson; Estelle F. Rose-Koga; Kenneth T. Koga; Martin J. Whitehouse; Michael A. Antonelli; James Farquhar; James M. D. Day; Erik H. Hauri

Basaltic lavas erupted at some oceanic intraplate hotspot volcanoes are thought to sample ancient subducted crustal materials. However, the residence time of these subducted materials in the mantle is uncertain and model-dependent, and compelling evidence for their return to the surface in regions of mantle upwelling beneath hotspots is lacking. Here we report anomalous sulphur isotope signatures indicating mass-independent fractionation (MIF) in olivine-hosted sulphides from 20-million-year-old ocean island basalts from Mangaia, Cook Islands (Polynesia), which have been suggested to sample recycled oceanic crust. Terrestrial MIF sulphur isotope signatures (in which the amount of fractionation does not scale in proportion with the difference in the masses of the isotopes) were generated exclusively through atmospheric photochemical reactions until about 2.45 billion years ago. Therefore, the discovery of MIF sulphur in these young plume lavas suggests that sulphur—probably derived from hydrothermally altered oceanic crust—was subducted into the mantle before 2.45 billion years ago and recycled into the mantle source of Mangaia lavas. These new data provide evidence for ancient materials, with negative Δ33S values, in the mantle source for Mangaia lavas. Our data also complement evidence for recycling of the sulphur content of ancient sedimentary materials to the subcontinental lithospheric mantle that has been identified in diamond-hosted sulphide inclusions. This Archaean age for recycled oceanic crust also provides key constraints on the length of time that subducted crustal material can survive in the mantle, and on the timescales of mantle convection from subduction to upwelling beneath hotspots.


Geology | 2009

Pyroxenite-rich mantle formed by recycled oceanic lithosphere: Oxygen-osmium isotope evidence from Canary Island lavas

James M. D. Day; D. Graham Pearson; Colin G. Macpherson; D. Lowry; Juan Carlos Carracedo

Plate tectonic processes result in recycling of crust and lithosphere into Earths mantle. Evidence for long-term preservation of recycled reservoirs in the mantle comes from the enriched isotopic character of oceanic island basalt (OIB) lavas. Although recycled constituents can explain much of the geochemical variation in the OIB-source mantle, it has been shown that direct melting of these components would lead to magmas with evolved compositions, unlike OIB. Instead, it has been argued that either metasomatic pyroxene-rich peridotite that has inherited the trace element and isotopic character of subducted materials, or high-temperature intramantle metasomatism of lithosphere can explain OIB compositions. To test these models, we present new oxygen and osmium isotope data for lavas from the Canary Islands of El Hierro and La Palma. These islands have distinct 18O/16O and 187Os/188Os compositions that can be explained through melting of pyroxenite-enriched peridotite mantle containing <10% recycled oceanic lithosphere. We also assess O-Os isotope systematics of lavas from Hawai‘i and the Azores and show that they also conform to addition of distinct recycled oceanic components, including lithosphere and pelagic sediment. We conclude that enriched isotopic signatures of some OIBs are consistent with pyroxenite-rich mantle sources metasomatized by recycled components.


The Astrophysical Journal | 2012

PLANETARY-SCALE STRONTIUM ISOTOPIC HETEROGENEITY AND THE AGE OF VOLATILE DEPLETION OF EARLY SOLAR SYSTEM MATERIALS

Frederic Moynier; James M. D. Day; Wataru Okui; Tetsuya Yokoyama; Audrey Bouvier; Richard J. Walker; Frank A. Podosek

Isotopic anomalies in planetary materials reflect both early solar nebular heterogeneity inherited from presolar stellar sources and processes that generated non-mass-dependent isotopic fractionations. The characterization of isotopic variations in heavy elements among early solar system materials yields important insight into the stellar environment and formation of the solar system, and about initial isotopic ratios relevant to long-term chronological applications. One such heavy element, strontium, is a central element in the geosciences due to wide application of the long-lived 87 Rb– 87 Sr radioactive as a chronometer. We show that the stable isotopes of Sr were heterogeneously distributed at both the mineral scale and the planetary scale in the early solar system, and also that the Sr isotopic heterogeneities correlate with mass-independent oxygen isotope variations, with only CI chondrites plotting outside of this correlation. The correlation implies that most solar system material formed by mixing of at least two isotopically distinct components: a CV-chondrite-like component and an O-chondrite-like component, and possibly a distinct CI-chondrite-like component. The heterogeneous distribution of Sr isotopes may indicate that variations in initial 87 Sr/ 86 Sr of early solar system materials reflect isotopic heterogeneity instead of having chronological significance, as interpreted previously. For example, given the differences in 84 Sr/ 86 Sr between calcium aluminum inclusions and eucrites (e 84 Sr > 2), the difference in age between these materials would be ∼6 Ma shorter than previously interpreted, placing the Sr chronology in agreement with other long- and short-lived isotope systems, such as U–Pb and Mn–Cr.


Nature | 2009

Early formation of evolved asteroidal crust

James M. D. Day; Richard D. Ash; Yang Liu; Jeremy J. Bellucci; Douglas Rumble; William F. McDonough; Richard J. Walker; Lawrence A. Taylor

Mechanisms for the formation of crust on planetary bodies remain poorly understood. It is generally accepted that Earth’s andesitic continental crust is the product of plate tectonics, whereas the Moon acquired its feldspar-rich crust by way of plagioclase flotation in a magma ocean. Basaltic meteorites provide evidence that, like the terrestrial planets, some asteroids generated crust and underwent large-scale differentiation processes. Until now, however, no evolved felsic asteroidal crust has been sampled or observed. Here we report age and compositional data for the newly discovered, paired and differentiated meteorites Graves Nunatak (GRA) 06128 and GRA 06129. These meteorites are feldspar-rich, with andesite bulk compositions. Their age of 4.52 ± 0.06 Gyr demonstrates formation early in Solar System history. The isotopic and elemental compositions, degree of metamorphic re-equilibration and sulphide-rich nature of the meteorites are most consistent with an origin as partial melts from a volatile-rich, oxidized asteroid. GRA 06128 and 06129 are the result of a newly recognized style of evolved crust formation, bearing witness to incomplete differentiation of their parent asteroid and to previously unrecognized diversity of early-formed materials in the Solar System.


Reviews in Mineralogy & Geochemistry | 2016

Highly Siderophile Elements in Earth, Mars, the Moon, and Asteroids

James M. D. Day; Alan D. Brandon; Richard J. Walker

The highly siderophile elements (HSE: Os, Ir, Ru, Rh, Pt, Pd, Re, Au) are key tracers of planetary accretion and differentiation processes due to their affinity for metal relative to silicate. Under low-pressure conditions the HSE are defined by having metal–silicate partition coefficients in excess of 104 (e.g., Kimura et al. 1974; Jones and Drake 1986; O’Neill et al. 1995; Borisov and Palme 1997; Mann et al. 2012). The HSE are geochemically distinct in that, with the exception of Au, they have elevated melting points relative to iron (1665 K), low vapour pressures, and are resistant to corrosion or oxidation. Under solar nebular conditions, Re, Os, Ir, Ru, Rh, and Pt, along with the moderately siderophile elements (MSE) Mo and W, condense as refractory-metal alloys. Palladium and Au are not as refractory and condense in solid solution with FeNi metal (Palme 2008). Assuming abundances of the HSE in materials that made up the bulk Earth were broadly similar to modern chondrite meteorites, mass balance calculations suggest that >98% of these elements reside in the metallic core (O’Neill and Palme 1998). In practical terms, the resultant low HSE abundance inventories in differentiated silicate crusts and mantles enables the use of these elements in order to effectively track metallic core formation and the subsequent additions of HSE-rich impactors to planets and asteroids (Fig. 1). In detail, the absolute and relative abundances of the HSE in planetary materials are also affected by mantle and crustal processes including melting, metasomatism, fractional crystallization, and crust-mantle remixing, as well as later impact processing, volatility of Re under oxidizing conditions, and low-temperature secondary alteration (cf., Day 2013; Gannoun et al. 2016, this volume). In the absence of metal, the HSE are chalcophile, so these elements are also affected by processes …


Nature Communications | 2015

Extensive volatile loss during formation and differentiation of the Moon

Chizu Kato; Frederic Moynier; Maria C. Valdes; Jasmeet K. Dhaliwal; James M. D. Day

Low estimated lunar volatile contents, compared with Earth, are a fundamental observation for Earth–Moon system formation and lunar evolution. Here we present zinc isotope and abundance data for lunar crustal rocks to constrain the abundance of volatiles during the final stages of lunar differentiation. We find that ferroan anorthosites are isotopically heterogeneous, with some samples exhibiting high δ66Zn, along with alkali and magnesian suite samples. Since the plutonic samples were formed in the lunar crust, they were not subjected to degassing into vacuum. Instead, their compositions are consistent with enrichment of the silicate portions of the Moon in the heavier Zn isotopes. Because of the difference in δ66Zn between bulk silicate Earth and lunar basalts and crustal rocks, the volatile loss likely occurred in two stages: during the proto-lunar disk stage, where a fraction of lunar volatiles accreted onto Earth, and from degassing of a differentiating lunar magma ocean, implying the possibility of isolated, volatile-rich regions in the Moons interior.


Nature | 2014

Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars

Heather B. Franz; James Farquhar; James M. D. Day; Rita C. Economos; Kevin D. McKeegan; Axel K. Schmitt; Anthony J. Irving; Joost Hoek; James W. Dottin

The geochemistry of Martian meteorites provides a wealth of information about the solid planet and the surface and atmospheric processes that occurred on Mars. The degree to which Martian magmas may have assimilated crustal material, thus altering the geochemical signatures acquired from their mantle sources, is unclear. This issue features prominently in efforts to understand whether the source of light rare-earth elements in enriched shergottites lies in crustal material incorporated into melts or in mixing between enriched and depleted mantle reservoirs. Sulphur isotope systematics offer insight into some aspects of crustal assimilation. The presence of igneous sulphides in Martian meteorites with sulphur isotope signatures indicative of mass-independent fractionation suggests the assimilation of sulphur both during passage of magmas through the crust of Mars and at sites of emplacement. Here we report isotopic analyses of 40 Martian meteorites that represent more than half of the distinct known Martian meteorites, including 30 shergottites (28 plus 2 pairs, where pairs are separate fragments of a single meteorite), 8 nakhlites (5 plus 3 pairs), Allan Hills 84001 and Chassigny. Our data provide strong evidence that assimilation of sulphur into Martian magmas was a common occurrence throughout much of the planet’s history. The signature of mass-independent fractionation observed also indicates that the atmospheric imprint of photochemical processing preserved in Martian meteoritic sulphide and sulphate is distinct from that observed in terrestrial analogues, suggesting fundamental differences between the dominant sulphur chemistry in the atmosphere of Mars and that in the atmosphere of Earth.


Science | 2017

Tungsten-182 heterogeneity in modern ocean island basalts

Andrea Mundl; M. Touboul; Matthew G. Jackson; James M. D. Day; Mark D. Kurz; Vedran Lekic; Rosalind T. Helz; Richard J. Walker

A mantle story told with metal and gas Differences in isotopic compositions of trace elements can help identify how regions of Earths mantle have evolved over time. Mundl et al. identified several ancient domains that have been isolated from mantle homogenization and thus contain signatures of primordial material. Tungsten and helium isotope values indicate fractionation and isolation of these mantle domains just after Earths formation. The findings help constrain ancient processes such as core formation, but also provide insight into unexplained structures in the lower mantle today. Science, this issue p. 66 Tungsten and helium isotopes from the deep mantle require primordial sequestration of metal. New tungsten isotope data for modern ocean island basalts (OIB) from Hawaii, Samoa, and Iceland reveal variable 182W/184W, ranging from that of the ambient upper mantle to ratios as much as 18 parts per million lower. The tungsten isotopic data negatively correlate with 3He/4He. These data indicate that each OIB system accesses domains within Earth that formed within the first 60 million years of solar system history. Combined isotopic and chemical characteristics projected for these ancient domains indicate that they contain metal and are repositories of noble gases. We suggest that the most likely source candidates are mega–ultralow-velocity zones, which lie beneath Hawaii, Samoa, and Iceland but not beneath hot spots whose OIB yield normal 182W and homogeneously low 3He/4He.

Collaboration


Dive into the James M. D. Day's collaboration.

Top Co-Authors

Avatar

L. A. Taylor

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Yang Liu

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Douglas Rumble

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Hilton

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Moynier

Institut de Physique du Globe de Paris

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederic Moynier

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge