James M. Finley
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James M. Finley.
The Journal of Physiology | 2013
James M. Finley; Amy J. Bastian; Jinger S. Gottschall
Neuroscientists often suggest that we adapt our movements to minimize energy use; however, recent studies have provided conflicting evidence in this regard. In the present study, we show that motor learning robustly increases the economy of locomotion during split‐belt treadmill adaptation. We also demonstrate that reductions in metabolic power scale with the magnitude of adaptation and are also associated with a reduction in muscle activity throughout the lower limbs. Our results provide strong evidence that increasing economy may be a key criterion driving the systematic changes in co‐ordination during locomotor adaptation. These findings may also facilitate the design of novel interventions to improve locomotor learning in stroke survivors.
Experimental Brain Research | 2012
James M. Finley; Yasin Y. Dhaher; Eric J. Perreault
The nervous system can regulate the mechanical properties of the human ankle through feed-forward mechanisms such as co-contraction and rapid feedback mechanisms such as stretch reflexes. Though each of these strategies may contribute to joint stability, it is unclear how their relative contribution varies when ankle stability is threatened. We addressed this question by characterizing co-contraction and stretch reflexes during balance of an inverted pendulum simulated by a rotary motor configured as an admittance servo. The stability of this haptic environment was manipulated by varying the stiffness of a virtual spring supporting the pendulum. We hypothesized that co-contraction and stretch reflex amplitude would increase as the stability of the haptic load attached to the ankle was reduced. Electromyographic activity in soleus, medial and lateral gastrocnemius, and tibialis anterior was used to characterize co-contraction patterns and stretch reflex amplitude as subjects stabilized the haptic load. Our results revealed that co-contraction was heightened as stability was reduced, but that the resulting joint stiffness was not sufficient to fully counteract the imposed instability. Reflex amplitude, in comparison, was attenuated as load stability was reduced, contrary to results from upper limb studies using similar paradigms. Together these findings suggest that the nervous system utilizes feed-forward co-contraction rather than rapid involuntary feedback to increase ankle stability during simple balance tasks. Furthermore, since the stiffness generated through co-contraction was not sufficient to fully balance the haptic load, our results suggest an important role for slower, volitional feedback in the control of ankle stability during balancing tasks.
Neurorehabilitation and Neural Repair | 2015
James M. Finley; Andrew W. Long; Amy J. Bastian; Gelsy Torres-Oviedo
Background. Step length asymmetry (SLA) is a common hallmark of gait poststroke. Though conventionally viewed as a spatial deficit, SLA can result from differences in where the feet are placed relative to the body (step position strategy), the timing between foot strikes (step time strategy), or the velocity of the body relative to the feet (step velocity strategy). Objective. The goal of this study was to characterize the relative contributions of each of these strategies to SLA. Methods. We developed an analytical model that parses SLA into independent step position, step time, and step velocity contributions. This model was validated by reproducing SLA values for 25 healthy participants when their natural symmetric gait was perturbed on a split-belt treadmill moving at either a 2:1 or 3:1 belt-speed ratio. We then applied the validated model to quantify step position, step time, and step velocity contributions to SLA in 15 stroke survivors while walking at their self-selected speed. Results. SLA was predicted precisely by summing the derived contributions, regardless of the belt-speed ratio. Although the contributions to SLA varied considerably across our sample of stroke survivors, the step position contribution tended to oppose the other 2—possibly as an attempt to minimize overall SLA. Conclusions. Our results suggest that changes in where the feet are placed or changes in interlimb timing could be used as compensatory strategies to reduce overall SLA in stroke survivors. These results may allow clinicians and researchers to identify patient-specific gait abnormalities and personalize their therapeutic approaches accordingly.
Clinical Neurophysiology | 2013
Randy D. Trumbower; James M. Finley; Jonathan Shemmell; Claire F. Honeycutt; Eric J. Perreault
OBJECTIVE Modulation of the long-latency reflex (LLR) is important for sensorimotor control during interaction with different mechanical loads. Transcortical pathways usually contribute to LLR modulation, but the integrity of pathways projecting to the paretic and non-paretic arms of stroke survivors is compromised. We hypothesize that disruption of transcortical reflex pathways reduces the capacity for stroke survivors to appropriately regulate the LLR bilaterally. METHODS Elbow perturbations were applied to the paretic and non-paretic arms of persons with stroke, and the dominant arm of age-matched controls as subjects interacted with Stiff or Compliant environments rendered by a linear actuator. Reflexes were quantified using surface electromyograms, recorded from biceps. RESULTS LLR amplitude was significantly larger during interaction with the Compliant load compared to the Stiff load in controls. However, there was no significant change in LLR amplitude for the paretic or non-paretic arm of stroke survivors. CONCLUSION Modulation of the LLR is altered in the paretic and non-paretic arms after stroke. SIGNIFICANCE Our results are indicative of bilateral sensorimotor impairments following stroke. The inability to regulate the LLR may contribute to bilateral deficits in tasks that require precise control of limb mechanics and stability.
Sensors | 2015
Beth A. Smith; Ivan A. Trujillo-Priego; Christianne J. Lane; James M. Finley; Fay B. Horak
Background: Normative values are lacking for daily quantity of infant leg movements. This is critical for understanding the relationship between the quantity of leg movements and onset of independent walking, and will begin to inform early therapy intervention for infants at risk for developmental delay. Methods: We used wearable inertial movement sensors to record full-day leg movement activity from 12 infants with typical development, ages 1–12 months. Each infant was tested three times across 5 months, and followed until the onset of independent walking. We developed and validated an algorithm to identify infant-produced leg movements. Results: Infants moved their legs tens of thousands of times per day. There was a significant effect of leg movement quantity on walking onset. Infants who moved their legs more walked later than infants who moved their legs less, even when adjusting for age, developmental level or percentile length. We will need a much larger sample to adequately capture and describe the effect of movement experience on developmental rate. Our algorithm defines a leg movement in a specific way (each pause or change in direction is counted as a new movement), and further assessment of movement characteristics are necessary before we can fully understand and interpret our finding that infants who moved their legs more walked later than infants who moved their legs less. Conclusions: We have shown that typically-developing infants produce thousands of leg movements in a typical day, and that this can be accurately captured in the home environment using wearable sensors. In our small sample we can identify there is an effect of leg movement quantity on walking onset, however we cannot fully explain it.
Journal of Neurophysiology | 2014
James M. Finley; Matthew A. Statton; Amy J. Bastian
Visual input provides vital information for helping us modify our walking pattern. For example, artificial optic flow can drive changes in step length during locomotion and may also be useful for augmenting locomotor training for individuals with gait asymmetries. Here we asked whether optic flow could modify the acquisition of a symmetric walking pattern during split-belt treadmill adaptation. Participants walked on a split-belt treadmill while watching a virtual scene that produced artificial optic flow. For the Stance Congruent group, the scene moved at the slow belt speed at foot strike on the slow belt and then moved at the fast belt speed at foot strike on the fast belt. This approximates what participants would see if they moved over ground with the same walking pattern. For the Stance Incongruent group, the scene moved fast during slow stance and vice versa. In this case, flow speed does not match what the foot is experiencing, but predicts the belt speed for the next foot strike. Results showed that the Stance Incongruent group learned more quickly than the Stance Congruent group even though each group learned the same amount during adaptation. The increase in learning rate was primarily driven by changes in spatial control of each limb, rather than temporal control. Interestingly, when this alternating optic flow pattern was presented alone, no adaptation occurred. Our results demonstrate that an unnatural pattern of optic flow, one that predicts the belt speed on the next foot strike, can be used to enhance learning rate during split-belt locomotor adaptation.
Physiological Reports | 2013
James M. Finley; Yasin Y. Dhaher; Eric J. Perreault
Involuntary responses to muscle stretch are often composed of a short‐latency reflex (SLR) and more variable responses at longer latencies such as the medium‐latency (MLR) and long‐latency stretch reflex (LLR). Although longer latency reflexes are enhanced in the upper limb during stabilization of external loads, it remains unknown if they have a similar role in the lower limb. This uncertainty results in part from the inconsistency with which longer latency reflexes have been observed in the lower limb. A review of the literature suggests that studies that only observe SLRs have used perturbations with large accelerations, possibly causing a synchronization of motoneuron refractory periods or an activation of force‐dependent inhibition. We therefore hypothesized that the amplitude of longer latency reflexes would vary with perturbation acceleration. We further hypothesized that if longer latency reflexes were elicited, they would increase in amplitude during control of an unstable load, as has been observed in the upper limb. These hypotheses were tested at the ankle while subjects performed a torque or position control task. SLR and MLR reflex components were elicited by ankle flexion perturbations with a fixed peak velocity and variable acceleration. Both reflex components initially scaled with acceleration, however, while the SLR continued to increase at high accelerations, the MLR weakened. At accelerations that reliably elicited MLRs, both the SLR and MLR were reduced during control of the unstable load. These findings clarify the conditions required to elicit MLRs in the ankle extensors and provide additional evidence that rapid feedback pathways are downregulated when stability is compromised in the lower limb.
Neurorehabilitation and Neural Repair | 2017
James M. Finley; Amy J. Bastian
Stroke survivors often have a slow, asymmetric walking pattern. They also walk with a higher metabolic cost than healthy, age-matched controls. It is often assumed that spatial-temporal asymmetries contribute to the increased metabolic cost of walking poststroke. However, elucidating this relationship is made challenging because of the interdependence between spatial-temporal asymmetries, walking speed, and metabolic cost. Here, we address these potential confounds by measuring speed-dependent changes in metabolic cost and implementing a recently developed approach to dissociate spatial versus temporal contributions to asymmetry in a sample of stroke survivors. We used expired gas analysis to compute the metabolic cost of transport (CoT) for each participant at 4 different walking speeds: self-selected speed, 80% and 120% of their self-selected speed, and their fastest comfortable speed. We also computed CoT for a sample of age- and gender-matched control participants who walked at the same speeds as their matched stroke survivor. Kinematic data were used to compute the magnitude of a number of variables characterizing spatial-temporal asymmetries. Across all speeds, stroke survivors had a higher CoT than controls. We also found that our sample of stroke survivors did not choose a self-selected speed that minimized CoT, contrary to typical observations in healthy controls. Multiple regression analyses revealed negative associations between speed and CoT and a positive association between asymmetries in foot placement relative to the trunk and CoT. These findings suggest that interventions designed to increase self-selected walking speed and reduce foot-placement asymmetries may be ideal for improving walking economy poststroke.
international conference of the ieee engineering in medicine and biology society | 2009
James M. Finley; Yasin Y. Dhaher; Eric J. Perreault
The dynamics of sway during quiet stance have often been approximated by the movement of an unstable inverted pendulum. Controlling this unstable load requires the nervous system to balance the reliance on feed-forward volitional activation and feedback mechanisms such as stretch reflexes. It has been demonstrated that reflex excitability is heightened when postural stability is threatened by destabilizing forces in the environment. However, the relationship between postural stability, volitional activation, and stretch reflex excitability remains unclear. We addressed this question by characterizing feed-forward and feedback activation strategies during balance of a simulated inverted pendulum. We hypothesized that feed-forward co-contraction and stretch reflex amplitude would scale together as the external support provided by the environment was reduced. Electromyographic (EMG) responses in 5 muscles of the lower limb were used to characterize co-contraction patterns and stretch reflex amplitude as subjects stabilized the simulated loads. Our results revealed that co-contraction magnitude did indeed scale with increasingly destabilizing torques; however reflex amplitude was attenuated as stability was reduced. These findings suggest that the contribution of feedback mechanisms to postural stability depends on both the level of stability provided by the environment and how the environment influences the pattern of volitional activation.
Gait & Posture | 2018
Kathryn L. Havens; Tatri Mukherjee; James M. Finley
The ability to control the bodys center of mass (CoM) is critical for preventing falls, which are a major health concern in aging populations. Control of the CoM has been assessed by characterizing dynamic margins of stability (MoS) which capture the dynamic relationship between the CoM and the base of support. Accurate estimation of CoM dynamics is best accomplished using a full-body marker set. However, a number of simplified estimates have been used throughout literature. Here, we determined the biases and sources of bias when computing MoS using four simplified CoM models, and we characterized how these biases varied in straight walking versus turning. CoM kinematics were characterized using a full-body marker set, the lower extremities and trunk, lower extremities only, an average of four pelvic markers, and one pelvic marker alone. Significant bias was demonstrated for most methods and was larger during turning tasks compared to straight walking. In the fore-aft direction, only overestimates in the MoS were observed, and these ranged from 15 to 110% larger than the true MoS value. In the mediolateral direction, both under- and over-estimates were observed and ranged from -175 to 225%. Across tasks, bias was smallest when using the lower extremity plus trunk (-23 to 62%) and pelvis average methods (-71 to 43%). Sources of bias were attributed to misestimates of CoM height, velocity, and position. Together, our findings suggest that the 1) lower extremity and trunk model and 2) pelvis average model should be considered in future studies to minimize bias when simplified models of CoM dynamics are desired.