Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James M. Flanagan is active.

Publication


Featured researches published by James M. Flanagan.


American Journal of Human Genetics | 2008

Epigenomic Profiling Reveals DNA-Methylation Changes Associated with Major Psychosis

Jonathan Mill; Thomas Tang; Zachary Kaminsky; Tarang Khare; Simin Yazdanpanah; Luigi Bouchard; Peixin Jia; Abbas Assadzadeh; James M. Flanagan; Axel Schumacher; Sun Chong Wang; Arturas Petronis

Epigenetic misregulation is consistent with various non-Mendelian features of schizophrenia and bipolar disorder. To date, however, few studies have investigated the role of DNA methylation in major psychosis, and none have taken a genome-wide epigenomic approach. In this study we used CpG-island microarrays to identify DNA-methylation changes in the frontal cortex and germline associated with schizophrenia and bipolar disorder. In the frontal cortex we find evidence for psychosis-associated DNA-methylation differences in numerous loci, including several involved in glutamatergic and GABAergic neurotransmission, brain development, and other processes functionally linked to disease etiology. DNA-methylation changes in a significant proportion of these loci correspond to reported changes of steady-state mRNA level associated with psychosis. Gene-ontology analysis highlighted epigenetic disruption to loci involved in mitochondrial function, brain development, and stress response. Methylome network analysis uncovered decreased epigenetic modularity in both the brain and the germline of affected individuals, suggesting that systemic epigenetic dysfunction may be associated with major psychosis. We also report evidence for a strong correlation between DNA methylation in the MEK1 gene promoter region and lifetime antipsychotic use in schizophrenia patients. Finally, we observe that frontal-cortex DNA methylation in the BDNF gene is correlated with genotype at a nearby nonsynonymous SNP that has been previously associated with major psychosis. Our data are consistent with the epigenetic theory of major psychosis and suggest that DNA-methylation changes are important to the etiology of schizophrenia and bipolar disorder.


Human Molecular Genetics | 2013

Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking

Natalie S. Shenker; Silvia Polidoro; Karin van Veldhoven; Carlotta Sacerdote; Fulvio Ricceri; Mark A. Birrell; Maria G. Belvisi; Robert Brown; Paolo Vineis; James M. Flanagan

A single cytosine-guanine dinucleotide (CpG) site within coagulation factor II (thrombin) receptor-like 3 (F2RL3) was recently found to be hypomethylated in peripheral blood genomic DNA from smokers compared with former and non-smokers. We performed two epigenome-wide association studies (EWAS) nested in a prospective healthy cohort using the Illumina 450K Methylation Beadchip. The two populations consisted of matched pairs of healthy individuals (n = 374), of which half went on to develop breast or colon cancer. The association was analysed between methylation and smoking status, as well as cancer risk. In addition to the same locus in F2RL3, we report several loci that are hypomethylated in smokers compared with former and non-smokers, including an intragenic region of the aryl hydrocarbon receptor repressor gene (AHRR; cg05575921, P = 2.31 × 10(-15); effect size = 14-17%), an intergenic CpG island on 2q37.1 (cg21566642, P = 3.73 × 10(-13); effect size = 12%) and a further intergenic region at 6p21.33 (cg06126421, P = 4.96 × 10(-11), effect size = 7-8%). Bisulphite pyrosequencing validated six loci in a further independent population of healthy individuals (n = 180). Methylation levels in AHRR were also significantly decreased (P < 0.001) and expression increased (P = 0.0047) in the lung tissue of current smokers compared with non-smokers. This was further validated in a mouse model of smoke exposure. We observed an association with breast cancer risk for the 2q37.1 locus (P = 0.003, adjusted for the smoking status), but not for the other loci associated with smoking. These data show that smoking has a direct effect on the epigenome in lung tissue, which is also detectable in peripheral blood DNA and may contribute to cancer risk.


Breast Cancer Research | 2013

Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

Suzanne A. Eccles; Eric O. Aboagye; Simak Ali; Annie S. Anderson; Jo Armes; Fedor Berditchevski; Jeremy P. Blaydes; Keith Brennan; Nicola J. Brown; Helen E. Bryant; N.J. Bundred; Joy Burchell; Anna Campbell; Jason S. Carroll; Robert B. Clarke; Charlotte E. Coles; Gary Cook; Angela Cox; Nicola J. Curtin; Lodewijk V. Dekker; Isabel dos Santos Silva; Stephen W. Duffy; Douglas F. Easton; Diana Eccles; Dylan R. Edwards; Joanne Edwards; D. G. Evans; Deborah Fenlon; James M. Flanagan; Claire Foster

IntroductionBreast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice.MethodsMore than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer ‘stem’ cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account.ResultsThe 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working.ConclusionsWith resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years.


British Journal of Cancer | 2012

Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research

Natalie S. Shenker; James M. Flanagan

Epigenetics is the study of all mechanisms that regulate gene transcription and genome stability that are maintained throughout the cell division, but do not include the DNA sequence itself. The best-studied epigenetic mechanism to date is DNA methylation, where methyl groups are added to the cytosine base within cytosine–guanine dinucleotides (CpG sites). CpGs are frequently clustered in high density (CpG islands (CGIs)) at the promoter of over half of all genes. Current knowledge of transcriptional regulation by DNA methylation centres on its role at the promoter where unmethylated CGIs are present at most actively transcribed genes, whereas hypermethylation of the promoter results in gene repression. Over the last 5 years, research has gradually incorporated a broader understanding that methylation patterns across the gene (so-called intragenic or gene body methylation) may have a role in transcriptional regulation and efficiency. Numerous genome-wide DNA methylation profiling studies now support this notion, although whether DNA methylation patterns are a cause or consequence of other regulatory mechanisms is not yet clear. This review will examine the evidence for the function of intragenic methylation in gene transcription, and discuss the significance of this in carcinogenesis and for the future use of therapies targeted against DNA methylation.


Cancer Research | 2012

Intragenic ATM Methylation in Peripheral Blood DNA as a Biomarker of Breast Cancer Risk

Kevin Brennan; Montserrat Garcia-Closas; Nick Orr; Olivia Fletcher; Michael P. Jones; Alan Ashworth; Anthony J. Swerdlow; Heather Thorne; Elio Riboli; Paolo Vineis; Miren Dorronsoro; Françoise Clavel-Chapelon; Salvatore Panico; N. Charlotte Onland-Moret; Dimitrios Trichopoulos; Rudolf Kaaks; Kay-Tee Khaw; Robert Brown; James M. Flanagan

Few studies have evaluated the association between DNA methylation in white blood cells (WBC) and the risk of breast cancer. The evaluation of WBC DNA methylation as a biomarker of cancer risk is of particular importance as peripheral blood is often available in prospective cohorts and easier to obtain than tumor or normal tissues. Here, we used prediagnostic blood samples from three studies to analyze WBC DNA methylation of two ATM intragenic loci (ATMmvp2a and ATMmvp2b) and genome-wide DNA methylation in long interspersed nuclear element-1 (LINE1) repetitive elements. Samples were from a case-control study derived from a cohort of high-risk breast cancer families (KConFab) and nested case-control studies in two prospective cohorts: Breakthrough Generations Study (BGS) and European Prospective Investigation into Cancer and Nutrition (EPIC). Bisulfite pyrosequencing was used to quantify methylation from 640 incident cases of invasive breast cancer and 741 controls. Quintile analyses for ATMmvp2a showed an increased risk of breast cancer limited to women in the highest quintile [OR, 1.89; 95% confidence interval (CI), 1.36-2.64; P = 1.64 × 10(-4)]. We found no significant differences in estimates across studies or in analyses stratified by family history or menopausal status. However, a more consistent association was observed in younger than in older women and individually significant in KConFab and BGS, but not EPIC. We observed no differences in LINE1 or ATMmvp2b methylation between cases and controls. Together, our findings indicate that WBC DNA methylation levels at ATM could be a marker of breast cancer risk and further support the pursuit of epigenome-wide association studies of peripheral blood DNA methylation.


Human Molecular Genetics | 2009

Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients

James M. Flanagan; Marta Munoz-Alegre; Stephen Henderson; Thomas Tang; Ping Sun; Nichola Johnson; Olivia Fletcher; Isabel dos Santos Silva; Julian Peto; Chris Boshoff; Steven A. Narod; Arturas Petronis

Bilaterality of breast cancer is an indicator of constitutional cancer susceptibility; however, the molecular causes underlying this predisposition in the majority of cases is not known. We hypothesize that epigenetic misregulation of cancer-related genes could partially account for this predisposition. We have performed methylation microarray analysis of peripheral blood DNA from 14 women with bilateral breast cancer compared with 14 unaffected matched controls throughout 17 candidate breast cancer susceptibility genes including BRCA1, BRCA2, CHEK2, ATM, ESR1, SFN, CDKN2A, TP53, GSTP1, CDH1, CDH13, HIC1, PGR, SFRP1, MLH1, RARB and HSD17B4. We show that the majority of methylation variability is associated with intragenic repetitive elements. Detailed validation of the tiled region around ATM was performed by bisulphite modification and pyrosequencing of the same samples and in a second set of peripheral blood DNA from 190 bilateral breast cancer patients compared with 190 controls. We show significant hypermethylation of one intragenic repetitive element in breast cancer cases compared with controls (P = 0.0017), with the highest quartile of methylation associated with a 3-fold increased risk of breast cancer (OR 3.20, 95% CI 1.78–5.86, P = 0.000083). Increased methylation of this locus is associated with lower steady-state ATM mRNA level and correlates with age of cancer patients but not controls, suggesting a combined age–phenotype-related association. This research demonstrates the potential for gene-body epigenetic misregulation of ATM and other cancer-related genes in peripheral blood DNA that may be useful as a novel marker to estimate breast cancer risk. Accession numbers: The microarray data and associated .BED and .WIG files can be accessed through Gene Expression Omnibus accession number: GSE14603.


Epidemiology | 2013

DNA methylation as a long-term biomarker of exposure to tobacco smoke.

Natalie S. Shenker; Magne Ueland; Silvia Polidoro; Karin van Veldhoven; Fulvio Ricceri; Robert Brown; James M. Flanagan; Paolo Vineis

Background: Most biomarkers of exposure tend to have short half-lives. This includes cotinine, a metabolite of nicotine widely used to assess smoke exposure. Cotinine is thus unsuitable as a determinant of past exposure to cigarette smoke. Methods: We used bisulphite pyrosequencing of a set of four genomic loci (AHRR, 6p21, and two at 2q37) that had differential DNA methylation levels in peripheral blood DNA dependent on tobacco exposure to create a predictive model of smoking status. Results: Combining four gene loci into a single methylation index provided high positive predictive and sensitivity values for predicting former smoking status in both test (n = 81) and validation (n = 180) sample sets. Conclusions: This study provides a direct molecular measure of prior exposure to tobacco that can be performed using the quantitative approach of bisulphite pyrosequencing. Epigenetic changes that are detectable in blood may more generally act as molecular biomarkers for other exposures that are also difficult to quantify in epidemiological studies.


Breast Cancer Research and Treatment | 2010

Subtypes of familial breast tumours revealed by expression and copy number profiling

Nic Waddell; Jeremy Arnold; Sibylle Cocciardi; Leonard Da Silva; Anna Marsh; Joan Riley; Cameron N. Johnstone; Mohammed S. Orloff; Guillaume Assié; Charis Eng; Lynne Reid; Patricia Keith; Max Yan; Stephen B. Fox; Peter Devilee; Andrew K. Godwin; Frans B. L. Hogervorst; Fergus J. Couch; kConFab Investigators; Sean M. Grimmond; James M. Flanagan; Kum Kum Khanna; Peter T. Simpson; Sunil R. Lakhani; Georgia Chenevix-Trench

Extensive expression profiling studies have shown that sporadic breast cancer is composed of five clinically relevant molecular subtypes. However, although BRCA1-related tumours are known to be predominantly basal-like, there are few published data on other classes of familial breast tumours. We analysed a cohort of 75 BRCA1, BRCA2 and non-BRCA1/2 breast tumours by gene expression profiling and found that 74% BRCA1 tumours were basal-like, 73% of BRCA2 tumours were luminal A or B, and 52% non-BRCA1/2 tumours were luminal A. Thirty-four tumours were also analysed by single nucleotide polymorphism–comparative genomic hybridization (SNP-CGH) arrays. Copy number data could predict whether a tumour was basal-like or luminal with high accuracy, but could not predict its mutation class. Basal-like BRCA1 and basal-like non-BRCA1 tumours were very similar, and contained the highest number of chromosome aberrations. We identified regions of frequent gain containing potential driver genes in the basal (8q and 12p) and luminal A tumours (1q and 17q). Regions of homozygous loss associated with decreased expression of potential tumour suppressor genes were also detected, including in basal tumours (5q and 9p), and basal and luminal tumours (10q). This study highlights the heterogeneity of familial tumours and the clinical consequences for treatment and prognosis.


Cancer Prevention Research | 2012

Is there a link between genome-wide hypomethylation in blood and cancer risk?

Kevin Brennan; James M. Flanagan

Cancer cells display widespread genetic and epigenetic abnormalities, but the contribution to disease risk, particularly in normal tissue before disease, is not yet established. Genome-wide hypomethylation occurs frequently in tumors and may facilitate chromosome instability, aberrant transcription and transposable elements reactivation. Several epidemiologic case–control studies have reported genomic hypomethylation in peripheral blood of cancer patients, suggesting a systemic effect of hypomethylation on disease predisposition, which may be exploited for biomarker development. However, more recent studies have failed to reproduce this. Here, we report a meta-analysis, indicating a consistent inverse association between genomic 5-methylcytosine levels and cancer risk [95% confidence interval (CI), 1.2–6.1], but no overall risk association for studies using surrogates for genomic methylation, including methylation at the LINE-1 repetitive element (95% CI, 0.8–1.7). However, studies have been highly heterogeneous in terms of experimental design, assay type, and analytical methods. We discuss the limitations of the current approaches, including the low interindividual variability of surrogate assays such as LINE1 and the importance of using prospective studies to investigate DNA methylation in disease risk. Insights into genomic location of hypomethylation, from recent whole genome, high-resolution methylome maps, will help address this interesting and clinically important question. Cancer Prev Res; 5(12); 1345–57. ©2012 AACR.


American Journal of Human Genetics | 2010

DNA methylome of familial breast cancer identifies distinct profiles defined by mutation status

James M. Flanagan; S Kugler; Nicola Waddell; Cn Johnstone; Anna Marsh; S Henderson; Peter T. Simpson; L. Da Silva; Kum Kum Khanna; Sunil R. Lakhani; C Boshoff; Georgia Chenevix-Trench

It is now understood that epigenetic alterations occur frequently in sporadic breast carcinogenesis, but little is known about the epigenetic alterations associated with familial breast tumors. We performed genome-wide DNA-methylation profiling on familial breast cancers (n = 33) to identify patterns of methylation specific to the different mutation groups (BRCA1, BRCA2, and BRCAx) or intrinsic subtypes of breast cancer (basal, luminal A, luminal B, HER2-amplified, and normal-like). We used methylated DNA immunoprecipitation (MeDIP) on Affymetrix promoter chips to interrogate methylation profiles across 25,500 distinct transcripts. Using a support vector machine classification algorithm, we demonstrated that genome-wide methylation profiles predicted tumor mutation status with estimated error rates of 19% (BRCA1), 31% (BRCA2), and 36% (BRCAx) but did not accurately predict the intrinsic subtypes defined by gene expression. Furthermore, using unsupervised hierarchical clustering, we identified a distinct subgroup of BRCAx tumors defined by methylation profiles. We validated these findings in the 33 tumors in the test set, as well as in an independent validation set of 47 formalin-fixed, paraffin-embedded familial breast tumors, by pyrosequencing and Epityper. Finally, gene-expression profiling and SNP CGH array previously performed on the same samples allowed full integration of methylation, gene-expression, and copy-number data sets, revealing frequent hypermethylation of genes that also displayed loss of heterozygosity, as well as of genes that show copy-number gains, providing a potential mechanism for expression dosage compensation. Together, these data show that methylation profiles for familial breast cancers are defined by the mutation status and are distinct from the intrinsic subtypes.

Collaboration


Dive into the James M. Flanagan's collaboration.

Top Co-Authors

Avatar

Robert Brown

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Vineis

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Boshoff

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge