James M. Le Moine
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James M. Le Moine.
Ecology | 2013
Jasmine M. Crumsey; James M. Le Moine; Yvan Capowiez; Mitchell M. Goodsitt; S Larson; George W. Kling; Knute J. Nadelhoffer
Exotic earthworm introductions can alter above- and belowground properties of temperate forests, but the net impacts on forest soil carbon (C) dynamics are poorly understood. We used a mesocosm experiment to examine the impacts of earthworm species belonging to three different ecological groups (Lumbricus terrestris [anecic], Aporrectodea trapezoides [endogeic], and Eisenia fetida [epigeic]) on C distributions and storage in reconstructed soil profiles from a sandy temperate forest soil by measuring CO2 and dissolved organic carbon (DOC) losses, litter C incorporation into soil, and soil C storage with monospecific and species combinations as treatments. Soil CO2 loss was 30% greater from the Endogeic x Epigeic treatment than from controls (no earthworms) over the first 45 days; CO2 losses from monospecific treatments did not differ from controls. DOC losses were three orders of magnitude lower than CO2 losses, and were similar across earthworm community treatments. Communities with the anecic species accelerated litter C mass loss by 31-39% with differential mass loss of litter types (Acer rubrum > Populus grandidentata > Fagus grandifolia > Quercus rubra > or = Pinus strobus) indicative of leaf litter preference. Burrow system volume, continuity, and size distribution differed across earthworm treatments but did not affect cumulative CO2 or DOC losses. However, burrow system structure controlled vertical C redistribution by mediating the contributions of leaf litter to A-horizon C and N pools, as indicated by strong correlations between (1) subsurface vertical burrows made by anecic species, and accelerated leaf litter mass losses (with the exception of P. strobus); and (2) dense burrow networks in the A-horizon and the C and N properties of these pools. Final soil C storage was slightly lower in earthworm treatments, indicating that increased leaf litter C inputs into soil were more than offset by losses as CO2 and DOC across earthworm community treatments.
Ecosystems | 2013
Lucas E. Nave; Knute J. Nadelhoffer; James M. Le Moine; Linda T. A. van Diepen; Jules Cooch; Nicholas Van Dyke
Forest succession may cause changes in nitrogen (N) availability, vegetation and fungal community composition that affect N uptake by trees and their mycorrhizal symbionts. Understanding how these changes affect the functioning of the mycorrhizal symbiosis is of interest to ecosystem ecology because of the fundamental roles mycorrhizae play in providing nutrition to trees and structuring forest ecosystems. We investigated changes in tree and mycorrhizal fungal community composition, the availability and uptake of N by trees and mycorrhizal fungi in a forest undergoing a successional transition (age-related loss of early successional tree taxa). In this system, 82–96% of mycorrhizal hyphae were ectomycorrhizal (EM). As biomass production of arbuscular mycorrhizal (AM) trees increased, AM hyphae comprised a significantly greater proportion of total fungal hyphae, and the EM contribution to the N requirement of EM-associated tree taxa declined from greater than 75% to less than 60%. Increasing N availability was associated with lower EM hyphal foraging and 15N tracer uptake, yet the EM-associated later-successional species Quercus rubra was nonetheless a stronger competitor for 15N than AM-associated Acer rubrum, likely due to the more extensive nature of the persistent EM hyphal network. These results indicate that successional increases in N availability and co-dominance by AM-associated trees have increased the importance of AM fungi in the mycorrhizal community, while down-regulating EM N acquisition and transfer processes. This work advances understanding of linkages between tree and fungal community composition, and indicates that successional changes in N availability may affect competition between tree taxa with divergent resource acquisition strategies.
Science of The Total Environment | 2019
Apolline Auclerc; James M. Le Moine; Pierre-Joseph Hatton; Jeffrey A. Bird; Knute J. Nadelhoffer
Although fires are common disturbances in North American forests, the extent to which soil invertebrate assemblages recover from burning remains unclear. Here, we examine long-term (14- to 101-yr) recoveries of soil invertebrate communities from common cut and burn treatments conducted at 6 to 26-yr intervals since 1911 in a deciduous forest in the upper Great Lakes region (USA). We characterize soil surface macro-invertebrate communities during both fall and spring across a long-term, experimental fire chronosequence to characterize invertebrate community recovery at decadal time-scales and community changes between seasons. We posited that changes in invertebrate community structure might, in turn, impact decomposition process. We sampled active organisms at the soil surface using pitfall traps. We described understory vegetation, measured soil properties, and conducted a 4-year litter bag study with big-toothed aspen leaves (Populus grandidentata). Invertebrate community responses followed a habitat accommodation model of succession showing that invertebrate succession is dependent on the soil surface properties. The fall and spring measures revealed that the densities of active invertebrates were highest 101 years after fire. For a given pair of stands, a pattern of sharing higher percentage of taxa was denoted when stands were of similar age. Some species such as the beetle Stelidota octomaculata appeared to be indicator of the chronosequence succession stage because it tracks the successional increase of Quercus and acorn production at the study site. We also found a significant positive correlation between leaf decomposition of soil macrofaunal accessible leaves and millipedes density across the chronosequence. We show that vegetation cover changes and related shifts in habitat structure occurring during post-fire succession are important in shaping communities assemblages. This finding highlights the importance of simultaneously considering abiotic-biotic factors together with above- and belowground measurements to better characterize controls on successional community dynamics after disturbance.
Remote Sensing of Environment | 2004
Daolan Zheng; John Rademacher; Jiquan Chen; Thomas R. Crow; Mary K. Bresee; James M. Le Moine; Soung Ryoul Ryu
Environmental Management | 2004
Siyan Ma; Jiquan Chen; Malcolm P. North; Heather E. Erickson; Mary K. Bresee; James M. Le Moine
Environmental Management | 2004
Jiquan Chen; Kimberley D. Brosofske; Asko Noormets; Thomas R. Crow; Mary K. Bresee; James M. Le Moine; Eugénie S. Euskirchen; Steve V. Mather; Daolan Zheng
Soil Biology & Biochemistry | 2014
Jasmine M. Crumsey; James M. Le Moine; Christoph S. Vogel; Knute J. Nadelhoffer
Climate Research | 2005
Daolan Zheng; Jiquan Chen; Asko Noormets; Eugénie S. Euskirchen; James M. Le Moine
Biogeochemistry | 2015
Jasmine M. Crumsey; Yvan Capowiez; Mitch Goodsitt; S Larson; James M. Le Moine; Jeffrey A. Bird; George W. Kling; Knute J. Nadelhoffer
Forest Ecology and Management | 2017
Lucas E. Nave; Christopher M. Gough; Charles H. Perry; Kathryn L. Hofmeister; James M. Le Moine; Grant M. Domke; Christopher W. Swanston; Knute J. Nadelhoffer