Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James M. Roberts is active.

Publication


Featured researches published by James M. Roberts.


Cell | 1994

Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals

Kornelia Polyak; Mong Hong Lee; Hediye Erdjument-Bromage; Andrew Koff; James M. Roberts; Paul Tempst; Joan Massagué

We cloned p27Kip1, a cyclin-dependent kinase inhibitor implicated in G1 phase arrest by TGF beta and cell-cell contact. p27Kip1 associates with cyclin E-Cdk2 complexes in vivo and in vitro, prevents their activation, and inhibits previously activated complexes, and p27Kip1 overexpression obstructs cell entry into S phase. p27Kip1 potently inhibits Rb phosphorylation by cyclin E-Cdk2, cyclin A-Cdk2, and cyclin D2-Cdk4. p27Kip1 is highly conserved and broadly expressed in human tissues, and its mRNA levels are similar in proliferating and quiescent cells. p27Kip1 has a region of sequence similarity to p21Cip1/WAF1, the Cdk inhibitor whose transcription is stimulated by p53. A p27Kip1 peptide corresponding to this region retains Cdk inhibitory activity. We suggest that cell contact, TGF beta, and p53 all restrain cell proliferation through related Cdk inhibitors.


Cell | 1996

A Syndrome of Multiorgan Hyperplasia with Features of Gigantism, Tumorigenesis, and Female Sterility in p27Kip1-Deficient Mice

Matthew L. Fero; Michael J. Rivkin; Michael Tasch; Peggy L. Porter; Catherine E. Carow; Eduardo Firpo; Kornelia Polyak; Li-Huei Tsai; Virginia C. Broudy; Roger M. Perlmutter; James M. Roberts

SUMMARY Targeted disruption of the murine p27(Kip1) gene caused a gene dose-dependent increase in animal size without other gross morphologic abnormalities. All tissues were enlarged and contained more cells, although endocrine abnormalities were not evident. Thymic hyperplasia was associated with increased T lymphocyte proliferation, and T cells showed enhanced IL-2 responsiveness in vitro. Thus, p27 deficiency may cause a cell-autonomous defect resulting in enhanced proliferation in response to mitogens. In the spleen, the absence of p27 selectively enhanced proliferation of hematopoietic progenitor cells. p27 deletion, like deletion of the Rb gene, uniquely caused neoplastic growth of the pituitary pars intermedia, suggesting that p27 and Rb function in the same regulatory pathway. The absence of p27 also caused an ovulatory defect and female sterility. Maturation of secondary ovarian follicles into corpora lutea, which express high levels of p27, was markedly impaired.


Molecular and Cellular Biology | 1995

Human cyclin E, a nuclear protein essential for the G1-to-S phase transition.

Motoaki Ohtsubo; Anne M. Theodoras; Jill Schumacher; James M. Roberts; Michele Pagano

Cyclin E was first identified by screening human cDNA libraries for genes that would complement G1 cyclin mutations in Saccharomyces cerevisiae and has subsequently been found to have specific biochemical and physiological properties that are consistent with it performing a G1 function in mammalian cells. Most significantly, the cyclin E-Cdk2 complex is maximally active at the G1/S transition, and overexpression of cyclin E decreases the time it takes the cell to complete G1 and enter S phase. We have now found that mammalian cells express two forms of cyclin E protein which differ from each other by the presence or absence of a 15-amino-acid amino-terminal domain. These proteins are encoded by alternatively spliced mRNAs and are localized to the nucleus during late G1 and early S phase. Fibroblasts engineered to constitutively overexpress either form of cyclin E showed elevated cyclin E-dependent kinase activity and a shortened G1 phase of the cell cycle. The overexpressed cyclin E protein was detected in the nucleus during all cell cycle phases, including G0. Although the cyclin E protein could be overexpressed in quiescent cells, the cyclin E-Cdk2 complex was inactive. It was not activated until 6 to 8 h after readdition of serum, 4 h earlier than the endogenous cyclin E-Cdk2. This premature activation of cyclin E-Cdk2 was consistent with the extent of G1 shortening caused by cyclin E overexpression. Microinjection of affinity-purified anti-cyclin E antibodies during G1 inhibited entry into S phase, whereas microinjection performed near the G1/S transition was ineffective. These results demonstrate that cyclin E is necessary for entry into S phase. Moreover, we found that cyclin E, in contrast to cyclin D1, was required for the G1/S transition even in cells lacking retinoblastoma protein function. Therefore, cyclins E and D1 control two different transitions within the human cell cycle.


Developmental Cell | 2008

CDK Inhibitors: Cell Cycle Regulators and Beyond

Arnaud Besson; Steven F. Dowdy; James M. Roberts

First identified as cell cycle inhibitors mediating the growth inhibitory cues of upstream signaling pathways, the cyclin-CDK inhibitors of the Cip/Kip family p21Cip1, p27Kip1, and p57Kip2 have emerged as multifaceted proteins with functions beyond cell cycle regulation. In addition to regulating the cell cycle, Cip/Kip proteins play important roles in apoptosis, transcriptional regulation, cell fate determination, cell migration and cytoskeletal dynamics. A complex phosphorylation network modulates Cip/Kip protein functions by altering their subcellular localization, protein-protein interactions, and stability. These functions are essential for the maintenance of normal cell and tissue homeostasis, in processes ranging from embryonic development to tumor suppression.


Science | 1996

Requirement of p27Kip1 for Restriction Point Control of the Fibroblast Cell Cycle

Steve Coats; W. Michael Flanagan; Jamison Nourse; James M. Roberts

Cells deprived of serum mitogens will either undergo immediate cell cycle arrest or complete mitosis and arrest in the next cell cycle. The transition from mitogen dependence to mitogen independence occurs in the mid- to late G1 phase of the cell cycle and is called the restriction point. Murine Balb/c-3T3 fibroblasts deprived of serum mitogens accumulated the cyclin-dependent kinase (CDK) inhibitor p27Kip1. This was correlated with inactivation of essential G1 cyclin-CDK complexes and with cell cycle arrest in G1. The ability of specific mitogens to allow transit through the restriction point paralleled their ability to down-regulate p27, and antisense inhibition of p27 expression prevented cell cycle arrest in response to mitogen depletion. Therefore, p27 is an essential component of the pathway that connects mitogenic signals to the cell cycle at the restriction point.


Cell | 1991

Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family

Andrew Koff; F R Cross; Alfred Fisher; Jill Schumacher; Katherine Leguellec; Michel Philippe; James M. Roberts

A new human cyclin, named cyclin E, was isolated by complementation of a triple cln deletion in S. cerevisiae. Cyclin E showed genetic interactions with the CDC28 gene, suggesting that it functioned at START by interacting with the CDC28 protein. Two human genes were identified that could interact with cyclin E to perform START in yeast containing a cdc28 mutation. One was CDC2-HS, and the second was the human homolog of Xenopus CDK2. Cyclin E produced in E. coli bound and activated the CDC2 protein in extracts from human G1 cells, and antibodies against cyclin E immunoprecipitated a histone H1 kinase from HeLa cells. The interactions between cyclin E and CDC2, or CDK2, may be important at the G1 to S transition in human cells.


Cell | 1996

Fibrillar Collagen Inhibits Arterial Smooth Muscle Proliferation through Regulation of Cdk2 Inhibitors

Hidenori Koyama; Elaine W. Raines; Karin E. Bornfeldt; James M. Roberts; Russell Ross

Arterial smooth muscle cells (SMCs) are arrested in the G1 phase of the cell cycle on polymerized type I collagen fibrils, while monomer collagen supports SMC proliferation. Cyclin E-associated kinase and cyclin-dependent kinase 2 (cdk2) phosphorylation are inhibited on polymerized collagen, and levels of the cdk2 inhibitors p27Kip1 and p21Cip1/Waf1 are increased compared with SMCs on monomer collagen. p27Kip1 associates with the cyclin E-cdk2-p21Cip1/Waf1 complex in SMCs on polymerized collagen. Monovalent blocking antibodies to alpha2 integrins, integrins that mediate adhesion to both forms of collagen, mimic these effects on monomer collagen. Furthermore, polymerized collagen rapidly suppresses p70 S6 kinase, a possible regulator of p27Kip1. Thus, fibrillar collagen specifically regulates early integrin signaling that may lead to up-regulation of cdk2 inhibitors and inhibition of SMC proliferation.


Molecular Cell | 1998

Cleavage of p21Cip1/Waf1 and p27Kip1 Mediates Apoptosis in Endothelial Cells through Activation of Cdk2: Role of a Caspase Cascade

Bodo Levkau; Hidenori Koyama; Elaine W. Raines; Bruce E. Clurman; Barbara Herren; Kim Orth; James M. Roberts; Russell Ross

Apoptosis of human endothelial cells after growth factor deprivation is associated with rapid and dramatic up-regulation of cyclin A-associated cyclin-dependent kinase 2(cdk2) activity. In apoptotic cells, the C termini of the cdk inhibitors p21Cip1/Waf1 and p27Kip1 are truncated by specific cleavage. The enzyme involved in this cleavage is CPP32 and/or a CPP32-like caspase. After cleavage, p21Cip1/Waf1 loses its nuclear localization sequence and exits the nucleus. Cleavage of p21Cip1/Waf1 and p27Kip1 results in a substantial reduction in their association with nuclear cyclin-cdk2 complexes, leading to a dramatic induction of cdk2 activity. Dominant-negative cdk2, as well as a mutant of p21Cip1/Waf1 resistant to caspase cleavage, partially suppress apoptosis. These data suggest that cdk2 activation, through caspase-mediated cleavage of cdk inhibitors, may be instrumental in the execution of apoptosis following caspase activation.


Nature Cell Biology | 2003

Telomerase modulates expression of growth-controlling genes and enhances cell proliferation.

Laura L. Smith; Hilary A. Coller; James M. Roberts

Most somatic cells do not express sufficient amounts of telomerase to maintain a constant telomere length during cycles of chromosome replication. Consequently, there is a limit to the number of doublings somatic cells can undergo before telomere shortening triggers an irreversible state of cellular senescence. Ectopic expression of telomerase overcomes this limitation, and in conjunction with specific oncogenes can transform cells to a tumorigenic phenotype. However, recent studies have questioned whether the stabilization of chromosome ends entirely explains the ability of telomerase to promote tumorigenesis and have resulted in the hypothesis that telomerase has a second function that also supports cell division. Here we show that ectopic expression of telomerase in human mammary epithelial cells (HMECs) results in a diminished requirement for exogenous mitogens and that this correlates with telomerase-dependent induction of genes that promote cell growth. Furthermore, we show that inhibiting expression of one of these genes, the epidermal growth factor receptor (EGFR), reverses the enhanced proliferation caused by telomerase. We conclude that telomerase may affect proliferation of epithelial cells not only by stabilizing telomeres, but also by affecting the expression of growth-promoting genes.


Molecular Cell | 2000

Proteasomal Turnover of p21Cip1 Does Not Require p21Cip1 Ubiquitination

Robert J. Sheaff; Jeffrey D Singer; Jherek Swanger; Matthew Smitherman; James M. Roberts; Bruce E. Clurman

The Cdk inhibitor p21Cip1 is an unstable protein. Pharmacologic inhibition of the proteasome increases the half-life of p21 from less than 30 min to more than 2 hr and results in the accumulation of p21-ubiquitin conjugates. To determine whether ubiquitination was required for proteasomal degradation of p21, we constructed mutant versions of p21 that were not ubiquitinated in vivo. Remarkably, these mutants remained unstable and increased in abundance upon proteasome inhibition, indicating that direct ubiquitination of p21 is not necessary for its turnover by the proteasome. The frequently observed correlation between protein ubiquitination and proteasomal degradation is insufficient to conclude that ubiquitination is a prerequisite for degradation.

Collaboration


Dive into the James M. Roberts's collaboration.

Top Co-Authors

Avatar

Bruce E. Clurman

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Andrew Koff

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Eduardo Firpo

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Kornelia Polyak

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peggy L. Porter

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Matthew L. Fero

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Joan Massagué

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart J. Shankland

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge