James M. Trout
United States Department of Agriculture
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James M. Trout.
Emerging Infectious Diseases | 2003
Irshad M. Sulaiman; Ronald Fayer; Caryn Bern; Robert H. Gilman; James M. Trout; Peter M. Schantz; Pradeep Das; Altaf A. Lal; Lihua Xiao
To address the source of infection in humans and public health importance of Giardia duodenalis parasites from animals, nucleotide sequences of the triosephosphate isomerase (TPI) gene were generated for 37 human isolates, 15 dog isolates, 8 muskrat isolates, 7 isolates each from cattle and beavers, and 1 isolate each from a rat and a rabbit. Distinct genotypes were found in humans, cattle, beavers, dogs, muskrats, and rats. TPI and small subunit ribosomal RNA (SSU rRNA) gene sequences of G. microti from muskrats were also generated and analyzed. Phylogenetic analysis on the TPI sequences confirmed the formation of distinct groups. Nevertheless, a major group (assemblage B) contained most of the human and muskrat isolates, all beaver isolates, and the rabbit isolate. These data confirm that G. duodenalis from certain animals can potentially infect humans and should be useful in the detection, differentiation, and taxonomy of Giardia spp.
Journal of Parasitology | 2001
Ronald Fayer; James M. Trout; Lihua Xiao; U.M. Morgan; Altaf A. Lal; J. P. Dubey
Oocysts of Cryptosporidium, from the feces of a naturally infected dog and from an HIV-infected human, were identified as the previously reported canine genotype of Cryptosporidium parvum, hereafter referred to as Cryptosporidium canis n. sp. Also among the oocysts from the dog, a trace amount of C. parvum bovine genotype was detected. Cryptosporidium canis oocysts from both the dog and human were infectious for calves. Oocysts excreted by calf 1 (dog source) were approximately 90% C. canis and 10% C. parvum, whereas those excreted by calf 3 (human source) were 100% C. canis. Oocysts from calf 1 infected calf 2 resulting in excretion by calf 2 of oocysts ∼90% C. parvum and 10% C. canis. Oocysts of C. canis were not infectious for BALB/c neonatal mice or immunosuppressed C57 juvenile mice, although all control mice became infected with the C. parvum Beltsville isolate. Oocysts of C. canis from calf 1 and the human were structurally indistinguishable from oocysts of the C. parvum Beltsville isolate (bovine). However, C. canis oocysts differed markedly at the molecular level from all known species of Cryptosporidium based on sequence data for the 18S rDNA and the HSP 70 gene. The differences in genetics and host specificity clearly differentiate C. canis as a new species.
Veterinary Parasitology | 2008
Mónica Santín; James M. Trout; Ronald Fayer
Fecal specimens were collected from 30 calves from birth to 24 months of age at a dairy farm in Maryland to determine the prevalence and age distribution of Cryptosporidium species/genotypes. After centrifugation to remove debris and concentrate oocysts, specimens were examined by immunofluorescence microscopy and polymerase chain reaction (PCR). Fragments of the SSU-rDNA gene amplified by PCR were purified and PCR products were sequenced. All 30 calves shed Cryptosporidium oocysts at some time during the 24 months of the study. Of 990 specimens, 190 were Cryptosporidium-positive (19.2%). The highest prevalence of infection was at 2 weeks of age when 29 of the 30 calves were excreting oocysts. Prevalence was higher in pre-weaned calves (1-8 weeks of age) (45.8%) than in post-weaned calves (3-12 months of age) (18.5%) and heifers (12-24 months of age) (2.2%). Sequence data for 190 PCR-positive specimens identified: C. parvum, C. bovis, the Cryptosporidium deer-like genotype and C. andersoni, with cumulative prevalences of 100, 80, 60, and 3.3%, respectively. C. parvum constituted 97% of infections in pre-weaned calves but only 4% and 0% of infections in post-weaned calves and heifers, respectively. All C. parvum GP60 nucleotide sequences were subtype IIaA15G2R1.
Applied and Environmental Microbiology | 2003
Irshad M. Sulaiman; Ronald Fayer; Altaf A. Lal; James M. Trout; Frank W. Schaefer; Lihua Xiao
ABSTRACT Over 13 months, 465 beavers, foxes, muskrats, otters, and raccoons were trapped in four counties in eastern Maryland and examined by molecular methods for microsporidia. A two-step nested PCR protocol was developed to amplify a 392-bp fragment of the internal transcribed spacer region of the rRNA gene of Enterocytozoon spp., with the use of primers complementary to the conserved regions of published nucleotide sequences. Fifty-nine PCR-positive samples were sequenced. Multiple alignments of these sequences identified 17 genotypes of Enterocytozoon spp. (WL1 to WL17); of these, 15 have not been reported before. Most of the genotypes were found in multiple species of wildlife and belonged to a major group consisting of all the previously described Enterocytozoon bieneusi genotypes from human and domestic animals. Some of the isolates from muskrats and raccoons formed two distinct groups. Results of this study indicate that fur-bearing mammals, especially those closely associated with surface water, can be a potential source of human-pathogenic E. bieneusi. However, there are also host-adapted Enterocytozoon genotypes in wildlife, which may represent species different from E. bieneusi and have no apparent public health significance. This is the first report of E. bieneusi in wildlife.
Journal of Parasitology | 1998
Ronald Fayer; James M. Trout; Mark C. Jenkins
Oocysts of Cryptosporidium parvum obtained from calves were cleaned of fecal debris by density gradient centrifugation and suspended in deionized water in microcentrifuge tubes. The tubes were placed in circulating water baths at temperatures of -10, -5, 0, 5, 10, 15, 20, 25, 30, or 35 C, and 2 tubes were removed from each water bath 1, 2, 4, 8, 12, 16, 20, and 24 wk later. Oocysts from 1 tube were administered at the rate of 1.5 x 10(5) oocysts per mouse to 2 litters of neonatal BALB/c mice and were considered infective when developmental stages were found in histologic sections of mouse gut and/or a positive polymerase chain reaction (PCR) was obtained for C. parvum DNA in mouse ileum. The second tube was held at -70 C until tubes from all time periods were available, then oocysts within the tubes were assayed for amylopectin concentration. Oocysts held at -10 C were infectious up to 1 wk of storage, and those held at -5 C were infectious up to 8 wk of storage, as determined by PCR but not histology. Oocysts held at 0, 5, 10, 15, and 20 C were still infectious after 24 wk of storage. By microscopic examination of mouse tissue, oocysts held at 20 C infected only 1 of 10 mice after 24 wk of storage, and the number of developmental stages began declining after 4 wk of storage; those held at 25 and 30 C each produced infections up to 12 wk after storage in 1 of 10 mice with reduced numbers of developmental stages beginning 4 wk after storage. Those held at 35 C produced light infections in 2 of 10 mice only up to 1 wk of storage. Amylopectin concentration decreased with increasing length of storage time or temperature. These findings provide a guide for estimating the potential duration of oocyst infectivity within a wide range of environmental temperatures and demonstrate the relationship between amylopectin concentration and infectivity.
Veterinary Parasitology | 2000
Ronald Fayer; James M. Trout; Thaddeus K. Graczyk; Earl J. Lewis
The prevalence of Cryptosporidium, Giardia and Eimeria, in healthy, asymptomatic, post-weaned and mature cattle was investigated on three Maryland farms. One farm, a dairy research facility, had 150 multiparous Holstein milking cows; 24 were examined and Cryptosporidium andersoni was detected in three (12.5%) but neither Giardia nor Eimeria was detected. The second farm, a commercial dairy, had 57 multiparous Holstein milking cows and an equal number of heifers. Of 19 cows examined, C. parvum, Giardia duodenalis, and Eimeria bovis and/or E. ellipsoidalis were detected in two (10.5%), two (10.5%) and one (5.26%) cow, respectively. Of 23 heifers examined, C. parvum, Giardia, and E. bovis and E. ellipsoidalis, was detected in two (8.7%), four (17.4%), and five (21.7%), heifers, respectively. The third farm, a beef cattle breeding and genetics research facility, had 180 7- to 9-month old purebred black Angus. Of 118 examined for C. parvum and Giardia, 34 (28.8%) and 44 (37.3%) were positive, respectively, of 97 examined for E. bovis and/or E. ellipsoidalis 32 (33.0%) were positive. These findings, based on a method with a minimum detection level of 100 oocysts of C. parvum/g of feces, which underestimates the number of infected cattle, clearly demonstrate the presence of low level, asymptomatic infections in post-weaned and adult cattle in the United States and indicate the potential role of such cattle as reservoirs of infectious parasites.
Veterinary Parasitology | 2008
Ronald Fayer; Mónica Santín; James M. Trout
A new species, Cryptosporidium ryanae, is described from cattle. Oocysts of C. ryanae, previously identified as the Cryptosporidium deer-like genotype and recorded as such in GenBank (AY587166, EU203216, DQ182597, AY741309, and DQ871345), are similar to those of Cryptosporidium parvum and Cryptosporidium bovis but smaller. This genotype has been reported to be prevalent in cattle worldwide. Oocysts obtained from a calf for the present study are the smallest Cryptosporidium oocysts reported in mammals, measuring 2.94-4.41micromx2.94-3.68microm (mean=3.16micromx3.73microm) with a length/width shape index of 1.18 (n=40). The pre-patent period for two Cryptosporidium-naïve calves fed C. ryanae oocysts was 11 days and the patent period was 15-17 days. Oocysts were not infectious for BALB/c mice or lambs. Fragments of the SSU-rDNA, HSP-70, and actin genes amplified by PCR were purified and PCR products were sequenced. Multi-locus analysis of the three unlinked loci demonstrated the new species to be distinct from all other species and also demonstrated a lack of recombination, providing further evidence of species status. Based on morphological, molecular and biological data, this geographically widespread parasite found only in Bos taurus calves is recognized as a new species and is named C. ryanae.
Avian Pathology | 1993
Hyun S. Lillehoj; James M. Trout
The genus Eimeria contains a number of obligate intracellular protozoan parasites with a complicated life-cycle involving both asexual and sexual stages of development. Coccidiosis is caused by Eimeria infecting primarily the intestine of the susceptible host, thereby seriously impairing the growth and feed utilization of poultry and other livestock. The desire to develop a vaccine against Eimeria has promoted active research to elucidate the mechanisms of protective immunity and identification of candidate vaccine antigens. Protozoa are unique in their modes of transmission and nature of disease manifestations, the significance of which should be considered in the development of a control strategy. An intricate and complex interplay of different cell populations and cytokines is involved not only in the pathogenesis of coccidiosis, but also in the development of protective immunity. Thus, comprehensive understanding of the events leading to protection following Eimeria infection will be crucial for the development of an effective vaccine.
Journal of Microbiological Methods | 2001
James Higgins; Ronald Fayer; James M. Trout; Lihua Xiao; Altaf A. Lal; Steve Kerby; Mark C. Jenkins
Real time, TaqMan PCR assays were developed for the Cp11 and 18S rRNA genes of the protozoan parasite Cryptosporidium parvum. The TaqMan probes were specific for the genus Cryptosporidium, but could not hybridize exclusively with human-infectious C. parvum species and genotypes. In conjunction with development of the TaqMan assays, two commercial kits, the Mo Bio UltraClean Soil DNA kit, and the Qiagen QIAamp DNA Stool kit, were evaluated for DNA extraction from calf diarrhea and manure, and potassium dichromate and formalin preserved human feces. Real-time quantitation was achieved with the diarrhea samples, but nested PCR was necessary to detect C. parvum DNA in manure and human feces. Ileal tissues were obtained from calves at 3, 7, and 14 days post-infection, and DNA extracted and assayed. Nested PCR detected C. parvum DNA in the 7-day post-infection sample, but neither of the other time point samples were positive. These results indicate that real-time quantitation of C. parvum DNA, extracted using the commercial kits, is feasible on diarrheic feces, with large numbers of oocysts and small concentrations of PCR inhibitor(s). For samples with few oocysts and high concentrations of PCR inhibitor(s), such as manure, nested PCR is necessary for detection.
Applied and Environmental Microbiology | 2004
Ling Zhou; Ronald Fayer; James M. Trout; Una Ryan; Frank W. Schaefer; Lihua Xiao
ABSTRACT Of 471 specimens examined from foxes, raccoons, muskrats, otters, and beavers living in wetlands adjacent to the Chesapeake Bay, 36 were positive for five types of Cryptosporidium, including the C. canis dog and fox genotypes, Cryptosporidium muskrat genotypes I and II, and Cryptosporidium skunk genotype. Thus, fur-bearing mammals in watersheds excreted host-adapted Cryptosporidium oocysts that are not known to be of significant public health importance.