Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Muzerolle is active.

Publication


Featured researches published by James Muzerolle.


Astrophysical Journal Supplement Series | 2004

THE MULTIBAND IMAGING PHOTOMETER FOR SPITZER (MIPS)

G. H. Rieke; Erick T. Young; C. W. Engelbracht; D. M. Kelly; Frank J. Low; E. E. Haller; Jeffrey W. Beeman; Karl D. Gordon; J. A. Stansberry; Karl Anthony Misselt; James Cadien; J. E. Morrison; Gil Rivlis; William B. Latter; Alberto Noriega-Crespo; Deborah Lynne Padgett; Karl R. Stapelfeldt; Dean C. Hines; E. Egami; James Muzerolle; A. Alonso-Herrero; M. Blaylock; H. Dole; Joannah L. Hinz; Casey Papovich; P. G. Pérez-González; Paul S. Smith; K. Y. L. Su; Lee Bennett; D. T. Frayer

The Multiband Imaging Photometer for Spitzer (MIPS) provides long-wavelength capability for the mission in imaging bands at 24, 70, and 160 ?m and measurements of spectral energy distributions between 52 and 100 ?m at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point-spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The 24 ?m array has excellent photometric properties, and measurements with rms relative errors of about 1% can be obtained. The two longer-wavelength arrays use detectors with poor photometric stability, but a system of onboard stimulators used for relative calibration, combined with a unique data pipeline, produce good photometry with rms relative errors of less than 10%.


The Astrophysical Journal | 2003

ACCRETION IN YOUNG STELLAR/SUBSTELLAR OBJECTS

James Muzerolle; Lynne A. Hillenbrand; Nuria Calvet; Cesar Briceno; Lee Hartmann

We present a study of accretion in a sample of 45 young, low-mass objects in a variety of star-forming regions and young associations, about half of which are likely substellar. Based primarily on the presence of broad, asymmetric Hα emission, we have identified 13 objects (~30% of our sample) that are strong candidates for ongoing accretion. At least three of these are substellar. We do not detect significant continuum veiling in most of the accretors with late spectral types (M5-M7). Accretion shock models show that lack of measurable veiling allows us to place an upper limit to the mass accretion rates of 10-10 M☉ yr-1. Using magnetospheric accretion models with appropriate (sub)stellar parameters, we can successfully explain the accretor Hα emission-line profiles and derive quantitative estimates of accretion rates in the range 10-12 M☉ yr-1 < < 10-9 M☉ yr-1. There is a clear trend of decreasing accretion rate with stellar mass, with mean accretion rates declining by 3-4 orders of magnitude over ~1-0.05 M☉.


The Astrophysical Journal | 2001

Emission-Line Diagnostics of T Tauri Magnetospheric Accretion. II. Improved Model Tests and Insights into Accretion Physics

James Muzerolle; Nuria Calvet; Lee Hartmann

We present new radiative transfer models of magnetospheric accretion in T Tauri stars. Hydrogen and Na I line profiles were calculated, including line damping and continuum opacity for a grid of models spanning a large range of infall rates, magnetospheric geometries, and gas temperatures. We also calculated models for rotating magnetospheres and show that for typical T Tauri rotation rates, the line profiles are not significantly affected. We show that line-damping wings can produce significant high-velocity emission at Hα, and to a lesser extent in higher Balmer lines, in much better agreement with observations than previous models. We present comparisons to specific objects spanning a wide range of accretion activity and find that in most cases the models successfully reproduce the observed emission profile features. Blueshifted absorption components cannot be explained without including a wind outside of the magnetosphere, and true P Cygni Balmer line profiles in the few objects with extreme accretion activity indicate both absorption and emission from a wind. We constrain the range of gas temperatures required to explain observational diagnostics like profile shapes, line ratios, and continuum emission. The exact heating mechanism remains unclear but is probably linked to the accretion process itself. In order to explain observed correlations between line emission and accretion luminosity, we find that the size of the emitting region must be correlated with the accretion rate. We suggest that such a correlation may manifest itself in reality via nonaxisymmetric accretion, where the number and/or width of discrete funnel flows increase with increasing accretion rate, a scenario also indicated by accretion shock models.


The Astrophysical Journal | 2006

Debris Disk Evolution Around A Stars

Kate Y. L. Su; G. H. Rieke; J. A. Stansberry; G. Bryden; Karl R. Stapelfeldt; David E. Trilling; James Muzerolle; C. A. Beichman; Amaya Moro-Martin; Dean C. Hines; M. Werner

We report 24 and/or 70 μm measurements of ~160 A-type main-sequence stars using the Multiband Imaging Photometer for Spitzer (MIPS). Their ages range from 5 to 850 Myr, based on estimates from the literature (cluster or moving group associations) or from the H-R diagram and isochrones. The thermal infrared excess is identified by comparing the deviation (~3% and ~15% at the 1 σ level at 24 and 70 μm, respectively) between the measurements and the synthetic Kurucz photospheric predictions. Stars showing excess infrared emission due to strong emission lines or extended nebulosity seen at 24 μm are excluded from our sample; therefore, the remaining infrared excesses are likely to arise from circumstellar debris disks. At the 3 σ confidence level, the excess rate at 24 and 70 μm is 32% and ≥33% (with an uncertainty of 5%), considerably higher than what has been found for old solar analogs and M dwarfs. Our measurements place constraints on the fractional dust luminosities and temperatures in the disks. We find that older stars tend to have lower fractional dust luminosity than younger ones. While the fractional luminosity from the excess infrared emission follows a general 1/t relationship, the values at a given stellar age vary by at least 2 orders of magnitude. We also find that (1) older stars possess a narrow range of temperature distribution peaking at colder temperatures, and (2) the disk emission at 70 μm persists longer than that at 24 μm. Both results suggest that the debris disk clearing process is more effective in the inner regions.


The Astrophysical Journal | 2008

Spitzer Observations of NGC 1333: A Study of Structure and Evolution in a Nearby Embedded Cluster

Robert Allen Gutermuth; Philip C. Myers; S. T. Megeath; Lori E. Allen; Judith L. Pipher; James Muzerolle; A. Porras; E. Winston; Giovanni G. Fazio

We present a comprehensive analysis of structure in the young, embedded cluster, NGC 1333 using members identified with Spitzer and 2MASS photometry based on their IR-excess emission. A total of 137 members are identified in this way, composed of 39 protostars and 98 more evolved pre-main-sequence stars with disks. Of the latter class, four are transition/debris disk candidates. The fraction of exposed pre-main-sequence stars with disks is -->83% ? 11% , showing that there is a measurable diskless pre-main-sequence population. The sources in each of the Class I and II evolutionary states are shown to have very different spatial distributions relative to the distribution of the dense gas in their natal cloud. However, the distribution of nearest neighbor spacings among these two groups of sources are found to be quite similar, with a strong peak at spacings of 0.045 pc. Radial and azimuthal density profiles and surface density maps computed from the identified YSOs show that NGC 1333 is elongated and not strongly centrally concentrated, confirming previous claims in the literature. We interpret these new results as signs of a low velocity dispersion, extremely young cluster that is not in virial equilibrium.


The Astrophysical Journal | 2005

Decay of Planetary Debris Disks

G. H. Rieke; Kyl Su; J. A. Stansberry; David E. Trilling; G. Bryden; James Muzerolle; Brooke A. White; Nadiya Gorlova; Erick T. Young; C. A. Beichman; Karl R. Stapelfeldt; Dean C. Hines

We report new Spitzer 24 � m photometry of 76 main-sequence A-type stars. We combine these results with previously reportedSpitzer24 � m data and 24 and 25 � m photometry from theInfrared Space Observatoryand the InfraredAstronomySatellite.Theresultisasampleof266starswithmasscloseto2.5M� ,alldetectedtoatleastthe � 7 � level relative to their photospheric emission. We culled ages for the entire sample from the literature and/or estimated them using the H-R diagram and isochrones; they range from 5 to 850 Myr. We identified excess thermal emission using an internally derived K � 24 (or 25) � m photospheric color and then compared all stars in the sample tothatcolor.Becausewehaveexcludedstarswithstrongemissionlinesorextendedemission(associatedwithnearby interstellar gas), these excesses are likely to be generated by debris disks. Younger stars in the sample exhibit excess thermal emissionmore frequently andwithhigher fractional excess thandothe olderstars. However,asmanyas 50% oftheyoungerstarsdonotshowexcessemission.Thedeclineinthemagnitudeofexcessemission,forthosestarsthat show it, has a roughly t0/time dependence, with t0 � 150 Myr. If anything, stars in binary systems (including Algoltype stars) and k Boo stars show less excess emission than the other members of the sample. Our results indicate that (1) there is substantial variety among debris disks, including that a significant number of stars emerge from the protoplanetary stage of evolution with little remaining disk in the 10‐60 AU region and (2) in addition, it is likely that much of the dust we detect is generated episodically by collisions of large planetesimals during the planet accretion endgame,andthatindividualeventsoftendominatetheradiometricpropertiesofadebrissystem.Thislatterbehavior agrees generally withwhat weknowabouttheevolution of thesolar system, andalsowiththeoretical models ofplanetary system formation. Subject headingg circumstellar matter — infrared: stars — planetary systems: formation Online material: machine-readable table


The Astrophysical Journal | 2007

Infrared Extinction toward Nearby Star-forming Regions

Kevin M. Flaherty; Judith L. Pipher; S. T. Megeath; E. M. Winston; Robert Allen Gutermuth; James Muzerolle; Lori E. Allen; Giovanni G. Fazio

We present an independent estimate of the interstellar extinction law for the Spitzer IRAC bands, as well as a first attempt at extending the law to the 24 μm MIPS band. The source data for these measurements are observations of five nearby star-forming regions: the Orion A cloud, NGC 2068/2071, NGC 2024/2023, Serpens, and Ophiuchus. Color excess ratios E/E were measured for stars without infrared excess dust emission from circumstellar disks/envelopes. For four of these five regions, the extinction laws are similar at all wavelengths and differ systematically from a previous determination of the extinction law, which was dominated by the diffuse ISM, derived for the IRAC bands. This difference could be due to the difference in the dust properties of the dense molecular clouds observed here and those of the diffuse ISM. The extinction law at longer wavelengths toward the Ophiuchus region lies between that to the other four regions studied here and that for the ISM. In addition, we extended our extinction law determination to 24 μm for Serpens and NGC 2068/2071 using Spitzer MIPS data. We compare these results against several ISO extinction law determinations, although in each case there are assumptions which make absolute comparison uncertain. However, our work confirms a relatively flatter extinction curve from 4 to 8 μm than the previously assumed standard, as noted by all of these recent studies. The extinction law at 24 μm is consistent with previous measurements and models, although there are relatively large uncertainties.


Astrophysical Journal Supplement Series | 2004

Infrared Array Camera (IRAC) Colors of Young Stellar Objects

Lori E. Allen; Nuria Calvet; Paola D’Alessio; Bruno Merín; Lee Hartmann; S. Thomas Megeath; Robert Allen Gutermuth; James Muzerolle; Judith L. Pipher; Philip C. Myers; Giovanni G. Fazio

We compare the infrared colors predicted by theoretical models of protostellar envelopes and protoplanetary disks with initial observations of young stellar objects made with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. Disk and envelope models characterized by infall and/or accretion rates found in previous studies can quantitatively account for the range of IRAC colors found in four young embedded clusters: S140, S171, NGC 7129, and Cep C. The IRAC color-color diagram ([3.6]� [4.5] vs. [5.8]� [8.0]) can be used to help distinguish between young stars with only disk emission and protostars with circumstellar envelopes. Subject heading gs: infrared: stars — stars: formation — stars: pre–main-sequence


The Astronomical Journal | 2004

The Mass Accretion Rates of Intermediate-Mass T Tauri Stars

Nuria Calvet; James Muzerolle; C. Briceño; Jesús Hernández; Lee Hartmann; José Saucedo; Karl D. Gordon

We present Hubble Space Telescope ultraviolet spectra and supporting ground-based data for a sample of nine intermediate-mass T Tauri stars (IMTTSs; 1.5–4 M⊙). The targets belong to three star-forming regions: T Tau, SU Aur, and RY Tau in the Taurus clouds; EZ Ori, P2441, and V1044 Ori in the Ori OB1c association surrounding the Orion Nebula cluster; and CO Ori, GW Ori, and GX Ori in the ring around λ Ori. The supporting ground-based observations include nearly simultaneous UBV(R I)C photometry, 6 A resolution spectra covering the range 3900–7000 A, optical echelle observations in the range 5800–8600 A, and K-band near-infrared spectra. We use these data to determine improved spectral types and reddening corrections and to obtain physical parameters of the targets. We find that an extinction law with a weak 2175 A feature but high values of AUV/AV is required to explain the simultaneous optical-UV data; the reddening laws for two B-type stars located behind the Taurus clouds, HD 29647 and HD 283809, meet these properties. We argue that reddening laws with these characteristics may well be representative of cold, dense molecular clouds. Spectral energy distributions and emission-line profiles of the IMTTSs are consistent with expectations from magnetospheric accretion models. We compare our simultaneous optical-UV data with predictions from accretion shock models to get accretion luminosities and mass accretion rates () for the targets. We find that the average mass accretion rate for IMTTSs is ~3 × 10-8 M⊙ yr-1, a factor of ~5 higher than that for their low-mass counterparts. The new data extend the correlation between and stellar mass to the intermediate-mass range. Since the IMTTSs are evolutionary descendants of the Herbig Ae/Be stars, our results put limits to the mass accretion rates of their disks. We present luminosities of the UV lines of highly ionized metals and show that they are well above the saturation limit for magnetically active cool stars but correlate strongly with accretion luminosity, indicating that they are powered by accretion, in agreement with previous claims but using a sample in which reddening and accretion luminosities have been determined self-consistently. Finally, we find that the relation between accretion luminosity and Brγ luminosity found for low-mass T Tauri stars extends to the intermediate-mass regime.


Publications of the Astronomical Society of the Pacific | 2007

Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. I. The Stellar Calibrator Sample and the 24 μm Calibration

C. W. Engelbracht; M. Blaylock; K. Y. L. Su; Jeonghee Rho; G. H. Rieke; James Muzerolle; Deborah Lynne Padgett; Dean C. Hines; Karl D. Gordon; D. Fadda; Alberto Noriega-Crespo; D. M. Kelly; William B. Latter; Joannah L. Hinz; Karl Anthony Misselt; J. E. Morrison; J. A. Stansberry; D. L. Shupe; Susan Renee Stolovy; Wm. A. Wheaton; Erick T. Young; G. Neugebauer; Stefanie Wachter; P. G. Pérez-González; D. T. Frayer; Francine Roxanne Marleau

We present the stellar calibrator sample and the conversion from instrumental to physical units for the 24 μm channel of the Multiband Imaging Photometer for Spitzer (MIPS). The primary calibrators are A stars, and the calibration factor based on those stars is MJy sr^−1 (DN s^−1)^−1, with a nominal uncertainty of 2%. We discuss the data reduction procedures required to attain this accuracy; without these procedures, the calibration factor obtained using the automated pipeline at the Spitzer Science Center is lower. We extend this work to predict 24 μm flux densities for a sample of 238 stars that covers a larger range of flux densities and spectral types. We present a total of 348 measurements of 141 stars at 24 μm. This sample covers a factor of 460 in 24 μm flux density, from 8.6 mJy up to 4.0 Jy. We show that the calibration is linear over that range with respect to target flux and background level. The calibration is based on observations made using 3 s exposures; a preliminary analysis shows that the calibration factor may be 1% and 2% lower for 10 and 30 s exposures, respectively. We also demonstrate that the calibration is very stable: over the course of the mission, repeated measurements of our routine calibrator, HD 159330, show a rms scatter of only 0.4%. Finally, we show that the point-spread function (PSF) is well measured and allows us to calibrate extended sources accurately; Infrared Astronomy Satellite (IRAS) and MIPS measurements of a sample of nearby galaxies are identical within the uncertainties.

Collaboration


Dive into the James Muzerolle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Allen Gutermuth

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Karl D. Gordon

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

N'uria Llevot Calvet

Smithsonian Astrophysical Observatory

View shared research outputs
Top Co-Authors

Avatar

Paola D'Alessio

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge