Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James N. Culver is active.

Publication


Featured researches published by James N. Culver.


ACS Nano | 2013

Tin-Coated Viral Nanoforests as Sodium-Ion Battery Anodes

Yihang Liu; Yunhua Xu; Yujie Zhu; James N. Culver; Cynthia Lundgren; Kang Xu; Chunsheng Wang

Designed as a high-capacity alloy host for Na-ion chemistry, a forest of Sn nanorods with a unique core-shell structure was synthesized on viral scaffolds, which were genetically engineered to ensure a nearly vertical alignment upon self-assembly onto a metal substrate. The interdigital spaces thus formed between individual rods effectively accommodated the volume expansion and contraction of the alloy upon sodiation/desodiation, while additional carbon-coating engineered over these nanorods further suppressed Sn aggregation during extended electrochemical cycling. Due to the unique nanohierarchy of multiple functional layers, the resultant 3D nanoforest of C/Sn/Ni/TMV1cys, binder-free composite electrode already and evenly assembled on a stainless steel current collector, exhibited supreme capacity utilization and cycling stability toward Na-ion storage and release. An initial capacity of 722 mA·h (g Sn)(-1) along with 405 mA·h (g Sn)(-1) retained after 150 deep cycles demonstrates the longest-cycling nano-Sn anode material for Na-ion batteries reported in the literature to date and marks a significant performance improvement for neat Sn material as alloy host for Na-ion chemistry.


ACS Nano | 2012

Hierarchical Three-Dimensional Microbattery Electrodes Combining Bottom-Up Self-Assembly and Top-Down Micromachining

Konstantinos Gerasopoulos; Ekaterina Pomerantseva; Matthew McCarthy; Adam Brown; Chunsheng Wang; James N. Culver; Reza Ghodssi

The realization of next-generation portable electronics and integrated microsystems is directly linked with the development of robust batteries with high energy and power density. Three-dimensional micro- and nanostructured electrodes enhance energy and power through higher surface area and thinner active materials, respectively. Here, we present a novel approach for the fabrication of hierarchical electrodes that combine benefits of both length scales. The electrodes consist of self-assembled, virus-templated nanostructures conformally coating three-dimensional micropillars. Active battery material (V(2)O(5)) is deposited using atomic layer deposition on the hierarchical micro/nanonetwork. Electrochemical characterization of these electrodes indicates a 3-fold increase in energy density compared to nanostructures alone, in agreement with the surface area increase, while maintaining the high power characteristics of nanomaterials. Investigation of capacity scaling for varying active material thickness reveals underlying limitations in nanostructured electrodes and highlights the importance of our method in controlling both energy and power density with structural hierarchy.


Nano Letters | 2013

Architecturing hierarchical function layers on self-assembled viral templates as 3D nano-array electrodes for integrated Li-ion microbatteries.

Yihang Liu; Wei Zhang; Yujie Zhu; Yanting Luo; Yunhua Xu; Adam Brown; James N. Culver; Cynthia Lundgren; Kang Xu; Yuan Wang; Chunsheng Wang

This work enables an elegant bottom-up solution to engineer 3D microbattery arrays as integral power sources for microelectronics. Thus, multilayers of functional materials were hierarchically architectured over tobacco mosaic virus (TMV) templates that were genetically modified to self-assemble in a vertical manner on current-collectors, so that optimum power and energy densities accompanied with excellent cycle-life could be achieved on a minimum footprint. The resultant microbattery based on self-aligned LiFePO(4) nanoforests of shell-core-shell structure, with precise arrangement of various auxiliary material layers including a central nanometric metal core as direct electronic pathway to current collector, delivers excellent energy density and stable cycling stability only rivaled by the best Li-ion batteries of conventional configurations, while providing rate performance per foot-print and on-site manufacturability unavailable from the latter. This approach could open a new avenue for microelectromechanical systems (MEMS) applications, which would significantly benefit from the concept that electrochemically active components be directly engineered and fabricated as an integral part of the integrated circuit (IC).


Nano Letters | 2012

Biological templates for antireflective current collectors for photoelectrochemical cell applications.

Chia-Ying Chiang; Jillian Epstein; Adam Brown; Jeremy N. Munday; James N. Culver; Sheryl Ehrman

Three-dimensional (3D) structures such as nanowires, nanotubes, and nanorods have the potential to increase surface area, reduce light reflection, and shorten charge carrier transport distances. The assembly of such structures thus holds great promise for enhancing photoelectrochemical solar cell efficiency. In this study, genetically modified Tobacco mosaic virus (TMV1cys) was used to form self-assembling 3D nanorod current collectors and low light-reflecting surfaces. Photoactive CuO was subsequently deposited by sputtering onto these patterned nanostructures, and these structures were examined for photocurrent activity. CuO thicknesses of 520 nm on TMV1cys patterned current collectors produced the highest photocurrent density of 3.15 mA/cm(2) yet reported for a similar sized CuO system. Reflectivity measurements are in agreement with full-wave electromagnetic simulations, which can be used as a design tool for optimizing the CuO system. Thus the combined effects of reducing charge carrier transport distance, increasing surface area, and the suppression of light reflection make these virus-templated surfaces ideal for photoelectrochemical applications.


Virology | 2015

Plant virus directed fabrication of nanoscale materials and devices

James N. Culver; Adam Brown; Faheng Zang; Markus Gnerlich; Konstantinos Gerasopoulos; Reza Ghodssi

Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined functions assemble from smaller molecular components. In particular, plant virus-derived nanoparticles (PVNs) have drawn considerable attention for their unique self-assembly architectures and functionalities that can be harnessed to produce new materials for industrial and biomedical applications. In particular, PVNs provide simple systems to model and assemble nanoscale particles of uniform size and shape that can be modified through molecularly defined chemical and genetic alterations. Furthermore, PVNs bring the added potential to farm such bio-nanomaterials on an industrial scale, providing a renewable and environmentally sustainable means for the production of nano-materials. This review outlines the fabrication and application of several PVNs for a range of uses that include energy storage, catalysis, and threat detection.


Journal of Vacuum Science and Technology | 2013

Tobacco mosaic virus: A biological building block for micro/nano/bio systems

Xiao Z. Fan; Ekaterina Pomerantseva; Markus Gnerlich; Adam Brown; Konstantinos Gerasopoulos; Matthew McCarthy; James N. Culver; Reza Ghodssi

Tobacco mosaic virus (TMV) has the potential to be an ideal candidate for a building block of the next-generation micro/nano/bio systems. The TMV virion is a high-aspect ratio rigid nanotube that is robust and compatible with some conventional microfabrication processes. TMV can be chemically and genetically modified to enhance its physical properties and tailor them to specific applications. This review covers the use of TMV nanostructures in a wide range of micro/nano/bio systems. TMV has been utilized in the production of nanowires, nanostructured thin films, biomimetic surfaces, novel sensors, high performance microbatteries, solid-state electronics, and engineered biosystems. The work highlighted here is meant to give a perspective of the entire breadth of the properties of these virions, from their synthesis and functionalization to assembly and patterning, as well as feature works that represent key milestones in the field of biofabrication and biomaterial integration. The advantages already demons...


Biomacromolecules | 2013

Carboxylate-directed in vivo assembly of virus-like nanorods and tubes for the display of functional peptides and residues.

Adam Brown; Lindsay Naves; Xiao Wang; Reza Ghodssi; James N. Culver

Uniform dimensions and genetic tractability make filamentous viruses attractive templates for the display of functional groups used in materials science, sensor applications, and vaccine development. However, active virus replication and recombination often limit the usefulness of these viruses for such applications. To circumvent these limitations, genetic modifications of selected negatively charged intersubunit carboxylate residues within the coat protein of tobacco mosaic virus (TMV) were neutralized so as to stabilize the assembly of rod-shaped virus-like particles (VLPs) within bacterial expression systems. Here we show that TMV-VLP nanorods are easily purified, stable, and can be programmed in a variety of configurations to display functional peptides for antibody and small molecule binding.


Nanotechnology | 2015

Integration of genetically modified virus-like- particles with an optical resonator for selective bio-detection

Xiao Zhu Fan; L Naves; Nathan Siwak; Adam Brown; James N. Culver; Reza Ghodssi

A novel virus-like particle (TMV-VLP) receptor layer has been integrated with an optical microdisk resonator transducer for biosensing applications. This bioreceptor layer is functionalized with selective peptides that encode unique recognition affinities. Integration of bioreceptors with sensor platforms is very challenging due their very different compatibility regimes. The TMV-VLP nanoreceptor exhibits integration robustness, including the ability for self-assembly along with traditional top-down microfabrication processes. An optical microdisk resonator has been functionalized for antibody binding with this receptor, demonstrating resonant wavelength shifts of (Δλo) of 0.79 nm and 5.95 nm after primary antibody binding and enzyme-linked immunosorbent assay (ELISA), respectively, illustrating label-free sensing of this bonding event. This demonstration of label-free sensing with genetically engineered TMV-VLP shows the flexibility and utility of this receptor coating when considering integration with other existing transducer platforms.


BMC Plant Biology | 2012

DNA binding specificity of ATAF2, a NAC domain transcription factor targeted for degradation by Tobacco mosaic virus

Xiao Wang; James N. Culver

BackgroundControl of the host transcriptome represents a key battleground in the interaction of plants and pathogens. Specifically, plants have evolved complex defense systems that induce profound transcriptional changes in response to pathogen attack while pathogens have evolved mechanisms to subvert or disable these defenses. Several NAC transcription factors such as ATAF2 have been linked to plant defense responses, including those targeting viruses. The replication protein of Tobacco mosaic virus (TMV) has been shown to interact with and target the degradation of ATAF2. These findings suggest that the transcriptional targets of ATAF2 are involved in defense against TMV.ResultsTo detect potential ATAF2 transcriptional targets, a genomic pull-down assay was utilized to identify ATAF2 promoter binding sequences. Subsequent mobility shift and DNA footprinting assays identified a 30-bp ATAF2 binding sequence. An in vivo GUS reporter system confirmed the function of the identified 30-bp binding sequence as an ATAF2 specific transcriptional activator in planta. Gel filtration studies of purified ATAF2 protein and mutagenesis studies of the 30-bp binding sequence indicate ATAF2 functions as a dimer. Computational analysis of interacting promoter sequences identified a corresponding 25-bp A/T-rich consensus sequence with repeating [GC]AAA motifs. Upon ATAF2 induction real-time qRT-PCR studies confirmed the accumulation of select gene transcripts whose promoters contain this consensus sequence.ConclusionWe report the identification of a cis-regulatory binding sequence for ATAF2. Different from other known NAC protein binding sequences, the A/T-rich ATAF2 binding motif represents a novel binding sequence for NAC family proteins. Combined this information represents a unique tool for the identification of ATAF2 target genes.


Journal of Nanomaterials | 2012

Virus-assembled flexible electrode-electrolyte interfaces for enhanced polymer-based battery applications

Ayan Ghosh; Juchen Guo; Adam Brown; Elizabeth Royston; Chunsheng Wang; Peter Kofinas; James N. Culver

High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV-) assembled polytetrafluoroethylene (PTFE) nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide) (PEO) based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymercoated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

Collaboration


Dive into the James N. Culver's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juchen Guo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Royston

University of Maryland Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge