Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James N. Higginbotham is active.

Publication


Featured researches published by James N. Higginbotham.


Molecular & Cellular Proteomics | 2013

Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS

Michelle Demory Beckler; James N. Higginbotham; Jeffrey L. Franklin; Amy-Joan L. Ham; Patrick J. Halvey; Imade E. Imasuen; Corbin W. Whitwell; Ming Li; Daniel C. Liebler; Robert J. Coffey

Activating mutations in KRAS occur in 30% to 40% of colorectal cancers. How mutant KRAS alters cancer cell behavior has been studied intensively, but non-cell autonomous effects of mutant KRAS are less understood. We recently reported that exosomes isolated from mutant KRAS-expressing colon cancer cells enhanced the invasiveness of recipient cells relative to exosomes purified from wild-type KRAS-expressing cells, leading us to hypothesize mutant KRAS might affect neighboring and distant cells by regulating exosome composition and behavior. Herein, we show the results of a comprehensive proteomic analysis of exosomes from parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only). Mutant KRAS status dramatically affects the composition of the exosome proteome. Exosomes from mutant KRAS cells contain many tumor-promoting proteins, including KRAS, EGFR, SRC family kinases, and integrins. DKs-8 cells internalize DKO-1 exosomes, and, notably, DKO-1 exosomes transfer mutant KRAS to DKs-8 cells, leading to enhanced three-dimensional growth of these wild-type KRAS-expressing non-transformed cells. These results have important implications for non-cell autonomous effects of mutant KRAS, such as field effect and tumor progression.


Journal of Cell Biology | 2009

The enterocyte microvillus is a vesicle-generating organelle.

Russell E. McConnell; James N. Higginbotham; David A. Shifrin; David L. Tabb; Robert J. Coffey; Matthew J. Tyska

For decades, enterocyte brush border microvilli have been viewed as passive cytoskeletal scaffolds that serve to increase apical membrane surface area. However, recent studies revealed that in the in vitro context of isolated brush borders, myosin-1a (myo1a) powers the sliding of microvillar membrane along core actin bundles. This activity also leads to the shedding of small vesicles from microvillar tips, suggesting that microvilli may function as vesicle-generating organelles in vivo. In this study, we present data in support of this hypothesis, showing that enterocyte microvilli release unilamellar vesicles into the intestinal lumen; these vesicles retain the right side out orientation of microvillar membrane, contain catalytically active brush border enzymes, and are specifically enriched in intestinal alkaline phosphatase. Moreover, myo1a knockout mice demonstrate striking perturbations in vesicle production, clearly implicating this motor in the in vivo regulation of this novel activity. In combination, these data show that microvilli function as vesicle-generating organelles, which enable enterocytes to deploy catalytic activities into the intestinal lumen.


eLife | 2015

KRAS-dependent sorting of miRNA to exosomes

Diana J. Cha; Jeffrey L. Franklin; Yongchao Dou; Qi Liu; James N. Higginbotham; Michelle Demory Beckler; Alissa M. Weaver; Kasey C. Vickers; Nirpesh Prasad; Shawn Levy; Bing Zhang; Robert J. Coffey; James G. Patton

Mutant KRAS colorectal cancer (CRC) cells release protein-laden exosomes that can alter the tumor microenvironment. To test whether exosomal RNAs also contribute to changes in gene expression in recipient cells, and whether mutant KRAS might regulate the composition of secreted microRNAs (miRNAs), we compared small RNAs of cells and matched exosomes from isogenic CRC cell lines differing only in KRAS status. We show that exosomal profiles are distinct from cellular profiles, and mutant exosomes cluster separately from wild-type KRAS exosomes. miR-10b was selectively increased in wild-type exosomes, while miR-100 was increased in mutant exosomes. Neutral sphingomyelinase inhibition caused accumulation of miR-100 only in mutant cells, suggesting KRAS-dependent miRNA export. In Transwell co-culture experiments, mutant donor cells conferred miR-100-mediated target repression in wild-type-recipient cells. These findings suggest that extracellular miRNAs can function in target cells and uncover a potential new mode of action for mutant KRAS in CRC. DOI: http://dx.doi.org/10.7554/eLife.07197.001


Journal of Pharmacology and Experimental Therapeutics | 2006

Differential in Vivo Sensitivity to Inhibition of P-glycoprotein Located in Lymphocytes, Testes, and the Blood-Brain Barrier

Edna F. Choo; Daniel Kurnik; M. Muszkat; Tadashi Ohkubo; Sheila Shay; James N. Higginbotham; Hartmut Glaeser; Richard B. Kim; Alastair J. J. Wood; Grant R. Wilkinson

A major functional component of the blood-brain barrier is P-glycoprotein. In principle, inhibition of this efflux transporter would permit greater distribution of its substrates into the brain and increased central effects. Tariquidar and elacridar, potent and selective P-glycoprotein inhibitors, were investigated in this regard using the opioid loperamide as an in vivo probe in mice. Pretreatment with both inhibitors converted intravenous loperamide from a drug without central effects to one producing antinociception. Radiolabeled loperamide tissue distribution studies indicated that inhibition was associated with increased uptake into brain and testes in the absence of changes in plasma levels, along with enhanced efflux of rhodamine 123 from CD3e+ T-lymphocytes. However, with tariquidar, the loperamide dose-response curves for testes/plasma and brain/plasma concentration ratios were shifted 6- (p = 0.07) and 25-fold (p < 0.01) to the right, respectively (ED50 = 1.48 and 5.65 mg/kg), compared with the rhodamine 123 efflux curve (ED50 0.25 mg/kg). Less pronounced shifts were noted with elacridar where the brain/plasma ratio was shifted only 2-fold relative to the rhodamine 123 efflux data (ED50 = 2.36 versus 1.34 mg/kg, respectively; p 0.01). These results indicate that the P-glycoprotein localized in the blood-brain barrier and, to a lesser extent, the testes-blood barrier is more resistant to inhibition than at other tissue sites such as the lymphocyte; moreover, the extent of this effect depends on the inhibitor. Such resistance can be overcome by a sufficiently high dose of an inhibitor; however, whether this is safely attainable in the clinical situation remains to be determined.


Scientific Reports | 2016

Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes.

Yongchao Dou; Diana J. Cha; Jeffrey L. Franklin; James N. Higginbotham; Dennis K. Jeppesen; Alissa M. Weaver; Nripesh Prasad; Shawn Levy; Robert J. Coffey; James G. Patton; Bing Zhang

Recent studies have shown that circular RNAs (circRNAs) are abundant, widely expressed in mammals, and can display cell-type specific expression. However, how production of circRNAs is regulated and their precise biological function remains largely unknown. To study how circRNAs might be regulated during colorectal cancer progression, we used three isogenic colon cancer cell lines that differ only in KRAS mutation status. Cellular RNAs from the parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically-matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only) were analyzed using RNA-Seq. We developed a bioinformatics pipeline to identify and evaluate circRNA candidates from RNA-Seq data. Hundreds of high-quality circRNA candidates were identified in each cell line. Remarkably, circRNAs were significantly down-regulated at a global level in DLD-1 and DKO-1 cells compared to DKs-8 cells, indicating a widespread effect of mutant KRAS on circRNA abundance. This finding was confirmed in two independent colon cancer cell lines HCT116 (KRAS mutant) and HKe3 (KRAS WT). In all three cell lines, circRNAs were also found in secreted extracellular-vesicles, and circRNAs were more abundant in exosomes than cells. Our results suggest that circRNAs may serve as promising cancer biomarkers.


Journal of Immunology | 2008

Immunodominance of the VH1–46 Antibody Gene Segment in the Primary Repertoire of Human Rotavirus-Specific B Cells Is Reduced in the Memory Compartment through Somatic Mutation of Nondominant Clones

Cuixia Tian; Grace K. Luskin; Kevin M. Dischert; James N. Higginbotham; Bryan E. Shepherd; James E. Crowe

Detailed characterization of Ag-specific naive and memory B cell Ab repertoires elucidates the molecular basis for the generation of Ab diversity and the optimization of Ab structures that bind microbial Ags. In this study, we analyzed the immunophenotype and VH gene repertoire of rotavirus (RV) VP6-specific B cells in three circulating naive or memory B cell subsets (CD19+IgD+CD27−, CD19+IgD+CD27+, or CD19+IgD−CD27+) at the single-cell level. We aimed to investigate the influence of antigenic exposure on the molecular features of the two RV-specific memory B cell subsets. We found an increased frequency of CD19+IgD+CD27+ unclass-switched memory B cells and a low frequency of somatic mutations in CD19+IgD−CD27+ class-switched memory B cells in RV-specific memory B cells, suggesting a reduced frequency of isotype switching and somatic mutation in RV VP6-specific memory B cells compared with other memory B cells. Furthermore, we found that dominance of the VH1–46 gene segment was a prominent feature in the VH gene repertoire of RV VP6-specific naive B cells, but this dominance was reduced in memory B cells. Increased diversity in the VH gene repertoire of the two memory B cell groups derived from broader usage of VH gene segments, increased junctional diversity that was introduced by differential TdT activities, and somatic hypermutation.


Journal of Immunology | 2007

Cutting Edge: Oseltamivir Decreases T Cell GM1 Expression and Inhibits Clearance of Respiratory Syncytial Virus: Potential Role of Endogenous Sialidase in Antiviral Immunity

Martin L. Moore; Michael H. Chi; Weisong Zhou; Kasia Goleniewska; Jamye O’Neal; James N. Higginbotham; R. Stokes Peebles

The sialoglycosphingolipid GM1 is important for lipid rafts and immune cell signaling. T cell activation in vitro increases GM1 expression and increases endogenous sialidase activity. GM1 expression has been hypothesized to be regulated by endogenous sialidase. We tested this hypothesis in vivo using a mouse model of respiratory syncytial virus (RSV) infection. RSV infection increased endogenous sialidase activity in lung mononuclear cells. RSV infection increased lung CD8+ T cell surface GM1 expression. Activated CD8+ T cells in the lungs of RSV-infected mice were GM1high. Treatment of RSV-infected mice with the sialidase/neuraminidase inhibitor oseltamivir decreased T cell surface GM1 levels. Oseltamivir treatment decreased RSV-induced weight loss and inhibited RSV clearance. Our data indicate a novel role for an endogenous sialidase in regulating T cell GM1 expression and antiviral immunity. Also, oseltamivir, an important anti-influenza drug, inhibits the clearance of a respiratory virus that lacks a neuraminidase gene, RSV.


Molecular & Cellular Proteomics | 2008

Use of Fluorescence-activated Vesicle Sorting for Isolation of Naked2-associated, Basolaterally Targeted Exocytic Vesicles for Proteomics Analysis

Zheng Cao; Cunxi Li; James N. Higginbotham; Jeffrey L. Franklin; David L. Tabb; Ramona Graves-Deal; Salisha Hill; Kristin L. Cheek; W. Gray Jerome; Lynne A. Lapierre; James R. Goldenring; Amy-Joan L. Ham; Robert J. Coffey

By interacting with the cytoplasmic tail of a Golgi-processed form of transforming growth factor-α (TGFα), Naked2 coats TGFα-containing exocytic vesicles and directs them to the basolateral corner of polarized epithelial cells where the vesicles dock and fuse in a Naked2 myristoylation-dependent manner. These TGFα-containing Naked2-associated vesicles are not directed to the subapical Sec6/8 exocyst complex as has been reported for other basolateral cargo, and thus they appear to represent a distinct set of basolaterally targeted vesicles. To identify constituents of these vesicles, we exploited our finding that myristoylation-deficient Naked2 G2A vesicles are unable to fuse at the plasma membrane. Isolation of a population of myristoylation-deficient, green fluorescent protein-tagged G2A Naked2-associated vesicles was achieved by biochemical enrichment followed by flow cytometric fluorescence-activated vesicle sorting. The protein content of these plasma membrane de-enriched, flow-sorted fluorescent G2A Naked2 vesicles was determined by LC/LC-MS/MS analysis. Three independent isolations were performed, and 389 proteins were found in all three sets of G2A Naked2 vesicles. Rab10 and myosin IIA were identified as core machinery, and Na+/K+-ATPase α1 was identified as an additional cargo within these vesicles. As an initial validation step, we confirmed their presence and that of three additional proteins tested (annexin A1, annexin A2, and IQGAP1) in wild-type Naked2 vesicles. To our knowledge, this is the first large scale protein characterization of a population of basolaterally targeted exocytic vesicles and supports the use of fluorescence-activated vesicle sorting as a useful tool for isolation of cellular organelles for comprehensive proteomics analysis.


Oncogene | 2014

Heparin-binding epidermal growth factor-like growth factor eliminates constraints on activated Kras to promote rapid onset of pancreatic neoplasia

Kevin C. Ray; M E Moss; Jeffrey L. Franklin; Connie Weaver; James N. Higginbotham; Y Song; Frank Revetta; Stacy A. Blaine; L R Bridges; K E Guess; Robert J. Coffey; H C Crawford; Mary Kay Washington; Anna L. Means

Pancreatic cancer remains as one of the most deadly cancers with few treatment options at late stages and little information about how it develops through earlier stages. Activating mutation of the Kras gene has been implicated in, but is not sufficient for, tumorigenesis. In mouse models of pancreatic cancer, loss of tumor suppressor genes in conjunction with Kras mutation leads to gradual stochastic acquisition of neoplastic precursors and carcinomas, whereas many cells remain phenotypically unaltered in younger mice. Here, we demonstrate that two oncogenic events, mutation of Kras and production of the growth factor heparin-binding epidermal growth factor-like growth factor (HB-EGF), are sufficient for rapid and complete neoplastic transformation of the exocrine pancreas. We found that macrophages are the major source of HB-EGF production in pancreatic cancer tissue samples, and that macrophages are present in high density and in close association with human pancreatic cancer lesions. In a mouse model, high macrophage density was observed at the earliest stages of neoplastic transformation. The consequence of elevated HB-EGF signaling was investigated without the confounding effects of other macrophage-produced factors via transgenic overexpression of the active form of HB-EGF. In this model, HB-EGF was sufficient to promote Kras-initiated tumorigenesis, inducing rapid and complete neoplastic transformation of the entire exocrine pancreas shortly after birth. HB-EGF overexpression and KrasG12D together, but neither alone, increased proliferation with increased cyclinD1 and decreased Cdkn2a/2d (p16/p19Ink4A/Arf). These findings establish the importance of oncogenic synergy in cancer initiation and promotion, and establish a molecular link between inflammation and the earliest stages of tumor induction.


Traffic | 2011

Identification of a novel mono-leucine basolateral sorting motif within the cytoplasmic domain of amphiregulin

Jonathan D. Gephart; Bhuminder Singh; James N. Higginbotham; Jeffrey L. Franklin; Alfonso González; Heike Fölsch; Robert J. Coffey

Epithelial cells establish apical and basolateral (BL) membranes with distinct protein and lipid compositions. To achieve this spatial asymmetry, the cell utilizes a variety of mechanisms for differential sorting, delivery and retention of cell surface proteins. The EGF receptor (EGFR) and its ligand, amphiregulin (AREG), are transmembrane proteins delivered to the BL membrane in polarized epithelial cells. Herein, we show that the cytoplasmic domain of AREG (ACD) contains dominant BL sorting information; replacement of the cytoplasmic domain of apically targeted nerve growth factor receptor with the ACD redirects the chimera to the BL surface. Using sequential truncations and site‐directed mutagenesis of the ACD, we identify a novel BL sorting motif consisting of a single leucine C‐terminal to an acidic cluster (EEXXXL). In adaptor protein (AP)‐1B‐deficient cells, newly synthesized AREG is initially delivered to the BL surface as in AP‐1B‐expressing cells. However, in these AP‐1B‐deficient cells, recycling of AREG back to the BL surface is compromised, leading to its appearance at the apical surface. These results show that recycling, but not delivery, of AREG to the BL surface is AP‐1B dependent.

Collaboration


Dive into the James N. Higginbotham's collaboration.

Top Co-Authors

Avatar

Robert J. Coffey

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cuixia Tian

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dennis K. Jeppesen

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge